Comparison of a solid oxide cell with nickel/gadolinium‐doped ceria fuel electrode during operation with hydrogen/steam and carbon monoxide/carbon dioxide
Solid oxide cells (SOCs) offer the possibility to operate on hydrogen/steam (H2/H2O), carbon monoxide/carbon dioxide (CO/CO2), and mixtures thereof in the fuel cell as well as in the electrolyzer mode. In this study, the electrochemical processes in an electrolyte‐supported SOC exhibiting a Law Srx...
Gespeichert in:
Veröffentlicht in: | Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2023-12, Vol.23 (6), p.442-453 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Solid oxide cells (SOCs) offer the possibility to operate on hydrogen/steam (H2/H2O), carbon monoxide/carbon dioxide (CO/CO2), and mixtures thereof in the fuel cell as well as in the electrolyzer mode. In this study, the electrochemical processes in an electrolyte‐supported SOC exhibiting a Law Srx Coy Fez O(3‐δ) air electrode and a nickel/gadolinium‐doped ceria (Ni/CGO) fuel electrode (FE) were analyzed by electrochemical impedance spectroscopy, and the subsequent impedance data analysis by the distribution of relaxation times for CO/CO2 fuel mixtures. A physicochemical equivalent circuit model was fitted to the measured spectra. With the help of the extracted parameters, a zero‐dimensional direct current cell model was parametrized to simulate the current‐voltage behavior of the cell. This approach, previously implemented for H2/H2O fuel mixtures, is extended toward CO/CO2 fuels. It will be shown that the same model – with adapted parameters for the FE – can be applied. A comparison of measured and simulated current‐voltage curves showed an excellent agreement for both fuels and operating modes (solid oxide fuel cell/solid oxide electrolyzer cell). Simulations reveal that there is nearly no performance difference between H2O and CO2 electrolysis for the electrolyte‐supported cell with Ni/CGO FE in comparison to an anode‐supported cell with Ni/yttria‐stabilized zirconia FE. |
---|---|
ISSN: | 1615-6846 1615-6854 |
DOI: | 10.1002/fuce.202300060 |