Local variability of a taiga snow cover due to vegetation and microtopography

The taiga snow cover accumulates in relatively stable and windless weather. This should produce a uniform snow cover with continuous, laterally homogeneous stratigraphy and snow properties when the snow is deposited on a level, smooth substrate. However, such substrates are rare, and local variation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arctic, antarctic, and alpine research antarctic, and alpine research, 2023-12, Vol.55 (1)
Hauptverfasser: Komarov, Anton, Sturm, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The taiga snow cover accumulates in relatively stable and windless weather. This should produce a uniform snow cover with continuous, laterally homogeneous stratigraphy and snow properties when the snow is deposited on a level, smooth substrate. However, such substrates are rare, and local variations in vegetation and ground surface topography alter the structure of the snow cover and produce irregular snow layers. In this study, we investigated the effects of vegetation, microtopography, and microclimatic variability on the taiga snow near Fairbanks, Alaska. Through the winter of 2019-2020, in situ measurements were made at three locations with distinctly different local microtopographic features and radically different (but typical) vegetation. One site was an open grassy field, the second a mature spruce forest, and the third a birch forest located on thermokarst terrain with steep microrelief where ice wedges had degraded. Widely different canopy interception processes proved to have the strongest impact on the resulting snow cover heterogeneity by altering the initial deposition, with surface microtopography having the second strongest influence through postdepositional processes. In this article, we suggest a conceptual framework for understanding and modeling taiga snow variability in terms of the vegetation and microtopography that created it.
ISSN:1523-0430
1938-4246
DOI:10.1080/15230430.2023.2170086