Classical capacity of quantum non-Gaussian attenuator and amplifier channels
We consider a quantum bosonic channel that couples the input mode via a beam splitter or two-mode squeezer to an environmental mode that is prepared in an arbitrary state. We investigate the classical capacity of this channel, which we call a non-Gaussian attenuator or amplifier channel. If the envi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zacharie Van Herstraeten Guha, Saikat Cerf, Nicolas J |
description | We consider a quantum bosonic channel that couples the input mode via a beam splitter or two-mode squeezer to an environmental mode that is prepared in an arbitrary state. We investigate the classical capacity of this channel, which we call a non-Gaussian attenuator or amplifier channel. If the environment state is thermal, we of course recover a Gaussian phase-covariant channel whose classical capacity is well known. Otherwise, we derive both a lower and an upper bound to the classical capacity of the channel, drawing inspiration from the classical treatment of the capacity of non-Gaussian additive-noise channels. We show that the lower bound to the capacity is always achievable and give examples where the non-Gaussianity of the channel can be exploited so that the communication rate beats the capacity of the Gaussian-equivalent channel (i.e., the channel where the environment state is replaced by a Gaussian state with the same covariance matrix). Finally, our upper bound leads us to formulate and investigate conjectures on the input state that minimizes the output entropy of non-Gaussian attenuator or amplifier channels. Solving these conjectures would be a main step towards accessing the capacity of a large class of non-Gaussian bosonic channels. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2906659514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2906659514</sourcerecordid><originalsourceid>FETCH-proquest_journals_29066595143</originalsourceid><addsrcrecordid>eNqNyrsOgjAUgOHGxESivMNJnElKoSgz8TI4upOTWmJJOYVeBt9eBh_A6R_-b8MyUVVlca6F2LE8hJFzLpqTkLLK2KOzGIJRaEHhjMrED7gBloQU0wTkqLhhWgUSYIyaEkbnAekFOM3WDEZ7UG8k0jYc2HZAG3T-654dr5dndy9m75akQ-xHlzytqxctbxrZyrKu_lNflxU-Hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906659514</pqid></control><display><type>article</type><title>Classical capacity of quantum non-Gaussian attenuator and amplifier channels</title><source>Free E- Journals</source><creator>Zacharie Van Herstraeten ; Guha, Saikat ; Cerf, Nicolas J</creator><creatorcontrib>Zacharie Van Herstraeten ; Guha, Saikat ; Cerf, Nicolas J</creatorcontrib><description>We consider a quantum bosonic channel that couples the input mode via a beam splitter or two-mode squeezer to an environmental mode that is prepared in an arbitrary state. We investigate the classical capacity of this channel, which we call a non-Gaussian attenuator or amplifier channel. If the environment state is thermal, we of course recover a Gaussian phase-covariant channel whose classical capacity is well known. Otherwise, we derive both a lower and an upper bound to the classical capacity of the channel, drawing inspiration from the classical treatment of the capacity of non-Gaussian additive-noise channels. We show that the lower bound to the capacity is always achievable and give examples where the non-Gaussianity of the channel can be exploited so that the communication rate beats the capacity of the Gaussian-equivalent channel (i.e., the channel where the environment state is replaced by a Gaussian state with the same covariance matrix). Finally, our upper bound leads us to formulate and investigate conjectures on the input state that minimizes the output entropy of non-Gaussian attenuator or amplifier channels. Solving these conjectures would be a main step towards accessing the capacity of a large class of non-Gaussian bosonic channels.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Amplifiers ; Attenuation ; Attenuators ; Channels ; Covariance matrix ; Lower bounds ; Tempering ; Upper bounds</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Zacharie Van Herstraeten</creatorcontrib><creatorcontrib>Guha, Saikat</creatorcontrib><creatorcontrib>Cerf, Nicolas J</creatorcontrib><title>Classical capacity of quantum non-Gaussian attenuator and amplifier channels</title><title>arXiv.org</title><description>We consider a quantum bosonic channel that couples the input mode via a beam splitter or two-mode squeezer to an environmental mode that is prepared in an arbitrary state. We investigate the classical capacity of this channel, which we call a non-Gaussian attenuator or amplifier channel. If the environment state is thermal, we of course recover a Gaussian phase-covariant channel whose classical capacity is well known. Otherwise, we derive both a lower and an upper bound to the classical capacity of the channel, drawing inspiration from the classical treatment of the capacity of non-Gaussian additive-noise channels. We show that the lower bound to the capacity is always achievable and give examples where the non-Gaussianity of the channel can be exploited so that the communication rate beats the capacity of the Gaussian-equivalent channel (i.e., the channel where the environment state is replaced by a Gaussian state with the same covariance matrix). Finally, our upper bound leads us to formulate and investigate conjectures on the input state that minimizes the output entropy of non-Gaussian attenuator or amplifier channels. Solving these conjectures would be a main step towards accessing the capacity of a large class of non-Gaussian bosonic channels.</description><subject>Amplifiers</subject><subject>Attenuation</subject><subject>Attenuators</subject><subject>Channels</subject><subject>Covariance matrix</subject><subject>Lower bounds</subject><subject>Tempering</subject><subject>Upper bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsOgjAUgOHGxESivMNJnElKoSgz8TI4upOTWmJJOYVeBt9eBh_A6R_-b8MyUVVlca6F2LE8hJFzLpqTkLLK2KOzGIJRaEHhjMrED7gBloQU0wTkqLhhWgUSYIyaEkbnAekFOM3WDEZ7UG8k0jYc2HZAG3T-654dr5dndy9m75akQ-xHlzytqxctbxrZyrKu_lNflxU-Hg</recordid><startdate>20231225</startdate><enddate>20231225</enddate><creator>Zacharie Van Herstraeten</creator><creator>Guha, Saikat</creator><creator>Cerf, Nicolas J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231225</creationdate><title>Classical capacity of quantum non-Gaussian attenuator and amplifier channels</title><author>Zacharie Van Herstraeten ; Guha, Saikat ; Cerf, Nicolas J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29066595143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplifiers</topic><topic>Attenuation</topic><topic>Attenuators</topic><topic>Channels</topic><topic>Covariance matrix</topic><topic>Lower bounds</topic><topic>Tempering</topic><topic>Upper bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Zacharie Van Herstraeten</creatorcontrib><creatorcontrib>Guha, Saikat</creatorcontrib><creatorcontrib>Cerf, Nicolas J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zacharie Van Herstraeten</au><au>Guha, Saikat</au><au>Cerf, Nicolas J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Classical capacity of quantum non-Gaussian attenuator and amplifier channels</atitle><jtitle>arXiv.org</jtitle><date>2023-12-25</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We consider a quantum bosonic channel that couples the input mode via a beam splitter or two-mode squeezer to an environmental mode that is prepared in an arbitrary state. We investigate the classical capacity of this channel, which we call a non-Gaussian attenuator or amplifier channel. If the environment state is thermal, we of course recover a Gaussian phase-covariant channel whose classical capacity is well known. Otherwise, we derive both a lower and an upper bound to the classical capacity of the channel, drawing inspiration from the classical treatment of the capacity of non-Gaussian additive-noise channels. We show that the lower bound to the capacity is always achievable and give examples where the non-Gaussianity of the channel can be exploited so that the communication rate beats the capacity of the Gaussian-equivalent channel (i.e., the channel where the environment state is replaced by a Gaussian state with the same covariance matrix). Finally, our upper bound leads us to formulate and investigate conjectures on the input state that minimizes the output entropy of non-Gaussian attenuator or amplifier channels. Solving these conjectures would be a main step towards accessing the capacity of a large class of non-Gaussian bosonic channels.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2906659514 |
source | Free E- Journals |
subjects | Amplifiers Attenuation Attenuators Channels Covariance matrix Lower bounds Tempering Upper bounds |
title | Classical capacity of quantum non-Gaussian attenuator and amplifier channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Classical%20capacity%20of%20quantum%20non-Gaussian%20attenuator%20and%20amplifier%20channels&rft.jtitle=arXiv.org&rft.au=Zacharie%20Van%20Herstraeten&rft.date=2023-12-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2906659514%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906659514&rft_id=info:pmid/&rfr_iscdi=true |