Classical capacity of quantum non-Gaussian attenuator and amplifier channels

We consider a quantum bosonic channel that couples the input mode via a beam splitter or two-mode squeezer to an environmental mode that is prepared in an arbitrary state. We investigate the classical capacity of this channel, which we call a non-Gaussian attenuator or amplifier channel. If the envi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Zacharie Van Herstraeten, Guha, Saikat, Cerf, Nicolas J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a quantum bosonic channel that couples the input mode via a beam splitter or two-mode squeezer to an environmental mode that is prepared in an arbitrary state. We investigate the classical capacity of this channel, which we call a non-Gaussian attenuator or amplifier channel. If the environment state is thermal, we of course recover a Gaussian phase-covariant channel whose classical capacity is well known. Otherwise, we derive both a lower and an upper bound to the classical capacity of the channel, drawing inspiration from the classical treatment of the capacity of non-Gaussian additive-noise channels. We show that the lower bound to the capacity is always achievable and give examples where the non-Gaussianity of the channel can be exploited so that the communication rate beats the capacity of the Gaussian-equivalent channel (i.e., the channel where the environment state is replaced by a Gaussian state with the same covariance matrix). Finally, our upper bound leads us to formulate and investigate conjectures on the input state that minimizes the output entropy of non-Gaussian attenuator or amplifier channels. Solving these conjectures would be a main step towards accessing the capacity of a large class of non-Gaussian bosonic channels.
ISSN:2331-8422