Measurement and Computation of NbSn Rutherford Cables Strength Under Multi-Axial Loading Conditions

Superconducting magnet coils are subject to large thermo-mechanical loads applied during magnet assembly, cooldown and operation. These loads can cause the reduction of their critical current due to mechanical strains or local filament failures. Measurements on longitudinally stretched strands and R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2024-08, Vol.34 (5), p.1-5
Hauptverfasser: Vallone, G., Croteau, J.F., Anderssen, E., Bordini, B., D'Addazio, M., Ferracin, P., Niccoli, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superconducting magnet coils are subject to large thermo-mechanical loads applied during magnet assembly, cooldown and operation. These loads can cause the reduction of their critical current due to mechanical strains or local filament failures. Measurements on longitudinally stretched strands and Rutherford cables under transverse pressure have allowed exploration of material limits in two directions. However, no systematic study of the effect of multi-axial loading conditions has been done. Finite Element (FE) models show that, indeed, the actual limits of the material are strongly dependent on the nature of the applied load and that the strength under multi-axial loading can be significantly higher with respect to uniaxial loading conditions. In this paper, we try, for the first time, to measure the effect of multi-direction loading conditions on Nb 3 Sn Rutherford cables. The experiments are performed on impregnated cable stacks under transverse, lateral, and longitudinal constraints. The integrity of the cables is verified by destructive metallography inspection, evaluating the damage as a function of the applied loading condition.
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2023.3340126