Greenup Variability Impact on Seasonal Streamflow and Soil Moisture Dynamics in Humid, Temperate Forests

In this study, we investigate how seasonal streamflow and soil moisture patterns have responded to variability in vegetation phenology in humid, temperate forested watersheds without significant seasonal snowmelt over the last four decades. We characterize spring streamflow peaks using 50th percenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2023-12, Vol.59 (12)
Hauptverfasser: Hwang, Taehee, Band, Lawrence E., Oishi, A. Christopher, Kang, Hojeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we investigate how seasonal streamflow and soil moisture patterns have responded to variability in vegetation phenology in humid, temperate forested watersheds without significant seasonal snowmelt over the last four decades. We characterize spring streamflow peaks using 50th percentiles of cumulative daily precipitation, streamflow, and soil moisture measurements, and investigate interactions with remotely sensed, greenup anomalies. After removing a dominant precipitation control, 1‐day earlier greenup is usually associated with about 1‐day early spring flow peak at four low‐elevation deciduous catchments using both sequential and multiple linear regressions. This indicates that the strong dependency of seasonal flow regimes on precipitation is mediated by vegetation seasonality, especially by greenup variability. In contrast, we find less significant correlations of the greenup anomalies on flow percentiles from two paired evergreen and two high‐elevation deciduous catchments. At a plot scale, similar correlations were found only at an upslope topographic position, where precipitation also showed tighter coupling with moisture seasonal patterns than downslope. Our study suggests that rainfall‐runoff and rainfall‐soil moisture relations have been closely mediated by vegetation seasonality in deciduous forests, especially by greenup anomalies, but patterned along topoclimate and hillslope gradients. This study emphasizes that it is important to understand phenological responses to ongoing climate change (in both long‐term and interannual variability) for prediction of seasonal flow regimes especially in deciduous forested catchments. Topoclimate modulates coupling of precipitation and greenup with seasonal runoff dynamics Deciduous catchments show tighter coupling between greenup and seasonal runoff dynamics than paired evergreen ones Hillslope modulates coupling of precipitation and greenup with seasonal soil moisture dynamics
ISSN:0043-1397
1944-7973
DOI:10.1029/2022WR034125