Characterization of rationally sampled quaternionic dual Gabor frames
This paper addresses quaternionic dual Gabor frames under the condition that the products of time‐frequency shift parameters are rational numbers. For a general overcomplete quaternionic Gabor frame with the product of time‐frequency shift parameters not equal to 12$$ \frac{1}{2} $$, we show that it...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2024-01, Vol.47 (2), p.1095-1112 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper addresses quaternionic dual Gabor frames under the condition that the products of time‐frequency shift parameters are rational numbers. For a general overcomplete quaternionic Gabor frame with the product of time‐frequency shift parameters not equal to
12$$ \frac{1}{2} $$, we show that its corresponding frame and translation operators do not commute, which leads to its canonical dual frame not having the Gabor structure, but it may have other dual frames with Gabor structure. We characterize when two quaternionic Gabor Bessel sequences form a pair of dual frames, and present a class of quaternionic dual Gabor frames. We also characterize quaternionic Gabor Riesz bases and prove that their canonical dual frames have Gabor structure. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.9701 |