The Hilbert–Grunwald specialization property over number fields

Given a finite group G and a number field K , we investigate the following question: Does there exist a Galois extension E/K ( t ) with group G whose set of specializations yields solutions to all Grunwald problems for the group G , outside a finite set of primes? Following previous work, such a Gal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2023-11, Vol.257 (2), p.433-463
Hauptverfasser: König, Joachim, Neftin, Danny
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a finite group G and a number field K , we investigate the following question: Does there exist a Galois extension E/K ( t ) with group G whose set of specializations yields solutions to all Grunwald problems for the group G , outside a finite set of primes? Following previous work, such a Galois extension would be said to have the “Hilbert–Grunwald property”. In this paper we reach a complete classification of groups G which admit an extension with the Hilbert–Grunwald property over fields such as K = ℚ. We thereby also complete the determination of the “local dimension” of finite groups over ℚ.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-023-2538-0