Comprehensive Thermodynamic Performance Evaluation of Various Gas Liquefaction Cycles for Cryogenic Energy Storage

This paper conducts comparative thermodynamic analysis and performance evaluations of various gas liquefaction configurations. The four most common liquefaction systems (Linde–Hampson, Kapitza, Heylandt, and Claude) were considered. The isothermal and multi-stage isentropic compression processes wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-12, Vol.15 (24), p.16906
Hauptverfasser: Kılıç, Muhsin, Altun, Ayse Fidan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper conducts comparative thermodynamic analysis and performance evaluations of various gas liquefaction configurations. The four most common liquefaction systems (Linde–Hampson, Kapitza, Heylandt, and Claude) were considered. The isothermal and multi-stage isentropic compression processes were evaluated and compared as actual compression processes. Thermodynamic evaluation is based on the energy required to compress a unit mass of gas, the liquefied air mass flow rate, and the exergetic efficiency. The modeling results show that three-stage compression cycles retain lower energy requirements. Increasing the compression stage from one to two for all the processes decreases the energy requirement by 34 to 38%. Changing the compression stage number from two to three reduces the energy requirement by 13%. The compression pressure and expander flow rate ratio significantly affect the liquefied air mass flow rate. Hence, a parametric analysis was conducted to obtain the best operating conditions for each considered cycle. Depending on the compression pressure, the optimum expander flow rate values of the Claude, Kapitza, and Heylandt cycles change from 0.65 to 0.5, 0.65 to 0.55, and 0.35 to 0.30, respectively. For the optimum cases, the Claude, Kapitza, and Heylandt cycles result in liquid yields that are about 2.5, 2.2, and 1.6 times higher than that of the Linde–Hampson cycle. The Claude cycle is the best operating cycle for all the considered performance metrics. Moreover, the performances of the Linde–Hampson and Claude cycles are investigated for various gases. Under the same operating conditions, the results show that better performance parameters are obtained with the gases that have relatively high normal boiling temperatures.
ISSN:2071-1050
2071-1050
DOI:10.3390/su152416906