Detection of Cherry Tree Crown Based on Improved LA-dpv3+ Algorithm

Accurate recognition of the canopy is a prerequisite for precision orchard yield estimation. This paper proposed an enhanced LA-dpv3+ approach for the recognition of cherry canopies based on UAV image data, with a focus on enhancing feature representation through the implementation of an attention m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests 2023-12, Vol.14 (12), p.2404
Hauptverfasser: Cheng, Zhenzhen, Cheng, Yifan, Li, Meng, Dong, Xiangxiang, Gong, Shoufu, Min, Xiaoxiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate recognition of the canopy is a prerequisite for precision orchard yield estimation. This paper proposed an enhanced LA-dpv3+ approach for the recognition of cherry canopies based on UAV image data, with a focus on enhancing feature representation through the implementation of an attention mechanism. The attention mechanism module was introduced to the encoder stage of the DeepLabV3+ architecture, which improved the network’s detection accuracy and robustness. Specifically, we developed a diagonal discrete cosine transform feature strategy within the attention convolution module to extract finer details of canopy information from multiple frequency components. The proposed model was constructed based on a lightweight DeepLabv3+ network architecture that incorporates a MobileNetv2 backbone, effectively reducing computational costs. The results demonstrate that our proposed method achieved a balance between computational cost and the quality of results when compared to competing approaches. Our model’s accuracy exceeded 89% while maintaining a modest model size of only 46.8 MB. The overall performance indicated that with the help of a neural network, segmentation failures were notably reduced, particularly in high-density weed conditions, resulting in significant increases in accuracy (ACC), F1-score, and intersection over union (IOU), which were increased by 5.44, 3.39, and 8.62%, respectively. The method proposed in this paper may be applied to future image-based applications and contribute to automated orchard management.
ISSN:1999-4907
1999-4907
DOI:10.3390/f14122404