Reliability Analysis of a Multilevel Inverter Applied to Stratospheric Drones Using Fault Tree Analysis

Stratospheric drones operating in extreme environments are very important for predicting reliability and are high-efficiency, high-performance, and lightweight power units. Multilevel inverters are suitable for application as power conversion units for stratospheric drones. A guideline is needed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-12, Vol.12 (24), p.4952
Hauptverfasser: Lee, Jung-Hwan, Jun, Hyang-Sig, Park, Hee-Mun, Park, Jin-Hyun, Lim, Sang-Kil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stratospheric drones operating in extreme environments are very important for predicting reliability and are high-efficiency, high-performance, and lightweight power units. Multilevel inverters are suitable for application as power conversion units for stratospheric drones. A guideline is needed to evaluate whether it is suitable for practical application from a reliability perspective among various multilevel topologies. Existing reliability prediction models cannot reflect the operating characteristics of multilevel inverters. In this paper, we analyze the driving characteristics of each topology from the perspective of half-bride, which is the basic configuration of multilevel inverters, and we propose a fault tree analysis (FTA) design with three operating modes. The proposed method has the advantage of being able to easily analyze the failure rate by expanding to single-phase and three-phase and to analyze the failure rate according to changes in modulation index (MI) and power factor (PF). The failure rates of the proposed method and the part count method are analyzed using MIL-HDBK-217F. We also analyze the impact of different various operating characteristics on the failure rate. From a reliability perspective, we provide a variety of guidelines for selecting a multilevel topology that fits the operation conditions.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics12244952