Energy Relaxation and dynamics in the correlated metal Sr\(_2\)RuO\(_4\) via THz two-dimensional coherent spectroscopy

Separating out the contributions of different scattering channels in strongly interacting metals is crucial in identifying the mechanisms that govern their properties. While momentum or current relaxation rates can be readily probed via \textit{dc} resistivity or optical/THz spectroscopy, distinguis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Barbalas, David, Romero, Ralph, Chaudhuri, Dipanjan, Mahmood, Fahad, Nair, Hari P, Schreiber, Nathaniel J, Schlom, Darrel G, Shen, K M, Armitage, N P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Barbalas, David
Romero, Ralph
Chaudhuri, Dipanjan
Mahmood, Fahad
Nair, Hari P
Schreiber, Nathaniel J
Schlom, Darrel G
Shen, K M
Armitage, N P
description Separating out the contributions of different scattering channels in strongly interacting metals is crucial in identifying the mechanisms that govern their properties. While momentum or current relaxation rates can be readily probed via \textit{dc} resistivity or optical/THz spectroscopy, distinguishing different kinds of inelastic scattering can be more challenging. Using nonlinear THz 2D coherent spectroscopy, we measure the rates of energy relaxation after THz excitation in the strongly interacting Fermi liquid, Sr\(_2\)RuO\(_4\). Energy relaxation is a bound on the total scattering and specifically a measure of contributions to the electron self-energy that arise from {\it inelastic} coupling to a bath. We observe two distinct energy relaxation channels: a fast process that we interpret as energy loss to the phonon system and a much slower relaxation that we interpret as arising from a non-equilibrium phonon effects and subsequent heat loss through diffusion. Interestingly, even the faster energy relaxation rate is at least an order of magnitude slower than the overall momentum relaxation rate, consistent with strong electron interactions and the dominance of energy-conserving umklapp or interband electron-electron scattering in momentum relaxation. The slowest energy relaxation rate decays on a sub-GHz scale, consistent with the relaxation dynamics of non-equilibrium phonons. Our observations reveal the versatility of nonlinear THz spectroscopy to measure the energy relaxation dynamics in correlated metals. Our work also highlights the need for improved theoretical understanding of such processes in interacting metals.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2904766022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2904766022</sourcerecordid><originalsourceid>FETCH-proquest_journals_29047660223</originalsourceid><addsrcrecordid>eNqNzMGKwjAUBdAwICjaf3jgZlwU4mutzloUdwPqslBC-tRIm3TyUmfq108WfoCrexfn3g8xwSxbppsccSwS5ruUEos1rlbZRDx2lvx1gCM16k8F4ywoW0M9WNUazWAshBuBdt5HEaiGloJq4OTLzwrLxbH_jiUvF_AwCs6HJ4Rfl9amJcvxLErtbuTJBuCOdPCOteuGmRhdVMOUvHIq5vvdeXtIO-9-euJQ3V3v45wr_JL5uigkYvae-gdBSUxK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904766022</pqid></control><display><type>article</type><title>Energy Relaxation and dynamics in the correlated metal Sr\(_2\)RuO\(_4\) via THz two-dimensional coherent spectroscopy</title><source>Freely Accessible Journals</source><creator>Barbalas, David ; Romero, Ralph ; Chaudhuri, Dipanjan ; Mahmood, Fahad ; Nair, Hari P ; Schreiber, Nathaniel J ; Schlom, Darrel G ; Shen, K M ; Armitage, N P</creator><creatorcontrib>Barbalas, David ; Romero, Ralph ; Chaudhuri, Dipanjan ; Mahmood, Fahad ; Nair, Hari P ; Schreiber, Nathaniel J ; Schlom, Darrel G ; Shen, K M ; Armitage, N P</creatorcontrib><description>Separating out the contributions of different scattering channels in strongly interacting metals is crucial in identifying the mechanisms that govern their properties. While momentum or current relaxation rates can be readily probed via \textit{dc} resistivity or optical/THz spectroscopy, distinguishing different kinds of inelastic scattering can be more challenging. Using nonlinear THz 2D coherent spectroscopy, we measure the rates of energy relaxation after THz excitation in the strongly interacting Fermi liquid, Sr\(_2\)RuO\(_4\). Energy relaxation is a bound on the total scattering and specifically a measure of contributions to the electron self-energy that arise from {\it inelastic} coupling to a bath. We observe two distinct energy relaxation channels: a fast process that we interpret as energy loss to the phonon system and a much slower relaxation that we interpret as arising from a non-equilibrium phonon effects and subsequent heat loss through diffusion. Interestingly, even the faster energy relaxation rate is at least an order of magnitude slower than the overall momentum relaxation rate, consistent with strong electron interactions and the dominance of energy-conserving umklapp or interband electron-electron scattering in momentum relaxation. The slowest energy relaxation rate decays on a sub-GHz scale, consistent with the relaxation dynamics of non-equilibrium phonons. Our observations reveal the versatility of nonlinear THz spectroscopy to measure the energy relaxation dynamics in correlated metals. Our work also highlights the need for improved theoretical understanding of such processes in interacting metals.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Channels ; Coherent scattering ; Diffusion rate ; Electron scattering ; Energy ; Fermi liquids ; Heat loss ; Inelastic scattering ; Metals ; Momentum ; Phonons ; Spectroscopic analysis ; Spectrum analysis ; Strontium</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Barbalas, David</creatorcontrib><creatorcontrib>Romero, Ralph</creatorcontrib><creatorcontrib>Chaudhuri, Dipanjan</creatorcontrib><creatorcontrib>Mahmood, Fahad</creatorcontrib><creatorcontrib>Nair, Hari P</creatorcontrib><creatorcontrib>Schreiber, Nathaniel J</creatorcontrib><creatorcontrib>Schlom, Darrel G</creatorcontrib><creatorcontrib>Shen, K M</creatorcontrib><creatorcontrib>Armitage, N P</creatorcontrib><title>Energy Relaxation and dynamics in the correlated metal Sr\(_2\)RuO\(_4\) via THz two-dimensional coherent spectroscopy</title><title>arXiv.org</title><description>Separating out the contributions of different scattering channels in strongly interacting metals is crucial in identifying the mechanisms that govern their properties. While momentum or current relaxation rates can be readily probed via \textit{dc} resistivity or optical/THz spectroscopy, distinguishing different kinds of inelastic scattering can be more challenging. Using nonlinear THz 2D coherent spectroscopy, we measure the rates of energy relaxation after THz excitation in the strongly interacting Fermi liquid, Sr\(_2\)RuO\(_4\). Energy relaxation is a bound on the total scattering and specifically a measure of contributions to the electron self-energy that arise from {\it inelastic} coupling to a bath. We observe two distinct energy relaxation channels: a fast process that we interpret as energy loss to the phonon system and a much slower relaxation that we interpret as arising from a non-equilibrium phonon effects and subsequent heat loss through diffusion. Interestingly, even the faster energy relaxation rate is at least an order of magnitude slower than the overall momentum relaxation rate, consistent with strong electron interactions and the dominance of energy-conserving umklapp or interband electron-electron scattering in momentum relaxation. The slowest energy relaxation rate decays on a sub-GHz scale, consistent with the relaxation dynamics of non-equilibrium phonons. Our observations reveal the versatility of nonlinear THz spectroscopy to measure the energy relaxation dynamics in correlated metals. Our work also highlights the need for improved theoretical understanding of such processes in interacting metals.</description><subject>Channels</subject><subject>Coherent scattering</subject><subject>Diffusion rate</subject><subject>Electron scattering</subject><subject>Energy</subject><subject>Fermi liquids</subject><subject>Heat loss</subject><subject>Inelastic scattering</subject><subject>Metals</subject><subject>Momentum</subject><subject>Phonons</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Strontium</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzMGKwjAUBdAwICjaf3jgZlwU4mutzloUdwPqslBC-tRIm3TyUmfq108WfoCrexfn3g8xwSxbppsccSwS5ruUEos1rlbZRDx2lvx1gCM16k8F4ywoW0M9WNUazWAshBuBdt5HEaiGloJq4OTLzwrLxbH_jiUvF_AwCs6HJ4Rfl9amJcvxLErtbuTJBuCOdPCOteuGmRhdVMOUvHIq5vvdeXtIO-9-euJQ3V3v45wr_JL5uigkYvae-gdBSUxK</recordid><startdate>20231221</startdate><enddate>20231221</enddate><creator>Barbalas, David</creator><creator>Romero, Ralph</creator><creator>Chaudhuri, Dipanjan</creator><creator>Mahmood, Fahad</creator><creator>Nair, Hari P</creator><creator>Schreiber, Nathaniel J</creator><creator>Schlom, Darrel G</creator><creator>Shen, K M</creator><creator>Armitage, N P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231221</creationdate><title>Energy Relaxation and dynamics in the correlated metal Sr\(_2\)RuO\(_4\) via THz two-dimensional coherent spectroscopy</title><author>Barbalas, David ; Romero, Ralph ; Chaudhuri, Dipanjan ; Mahmood, Fahad ; Nair, Hari P ; Schreiber, Nathaniel J ; Schlom, Darrel G ; Shen, K M ; Armitage, N P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29047660223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Channels</topic><topic>Coherent scattering</topic><topic>Diffusion rate</topic><topic>Electron scattering</topic><topic>Energy</topic><topic>Fermi liquids</topic><topic>Heat loss</topic><topic>Inelastic scattering</topic><topic>Metals</topic><topic>Momentum</topic><topic>Phonons</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Strontium</topic><toplevel>online_resources</toplevel><creatorcontrib>Barbalas, David</creatorcontrib><creatorcontrib>Romero, Ralph</creatorcontrib><creatorcontrib>Chaudhuri, Dipanjan</creatorcontrib><creatorcontrib>Mahmood, Fahad</creatorcontrib><creatorcontrib>Nair, Hari P</creatorcontrib><creatorcontrib>Schreiber, Nathaniel J</creatorcontrib><creatorcontrib>Schlom, Darrel G</creatorcontrib><creatorcontrib>Shen, K M</creatorcontrib><creatorcontrib>Armitage, N P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbalas, David</au><au>Romero, Ralph</au><au>Chaudhuri, Dipanjan</au><au>Mahmood, Fahad</au><au>Nair, Hari P</au><au>Schreiber, Nathaniel J</au><au>Schlom, Darrel G</au><au>Shen, K M</au><au>Armitage, N P</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Energy Relaxation and dynamics in the correlated metal Sr\(_2\)RuO\(_4\) via THz two-dimensional coherent spectroscopy</atitle><jtitle>arXiv.org</jtitle><date>2023-12-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Separating out the contributions of different scattering channels in strongly interacting metals is crucial in identifying the mechanisms that govern their properties. While momentum or current relaxation rates can be readily probed via \textit{dc} resistivity or optical/THz spectroscopy, distinguishing different kinds of inelastic scattering can be more challenging. Using nonlinear THz 2D coherent spectroscopy, we measure the rates of energy relaxation after THz excitation in the strongly interacting Fermi liquid, Sr\(_2\)RuO\(_4\). Energy relaxation is a bound on the total scattering and specifically a measure of contributions to the electron self-energy that arise from {\it inelastic} coupling to a bath. We observe two distinct energy relaxation channels: a fast process that we interpret as energy loss to the phonon system and a much slower relaxation that we interpret as arising from a non-equilibrium phonon effects and subsequent heat loss through diffusion. Interestingly, even the faster energy relaxation rate is at least an order of magnitude slower than the overall momentum relaxation rate, consistent with strong electron interactions and the dominance of energy-conserving umklapp or interband electron-electron scattering in momentum relaxation. The slowest energy relaxation rate decays on a sub-GHz scale, consistent with the relaxation dynamics of non-equilibrium phonons. Our observations reveal the versatility of nonlinear THz spectroscopy to measure the energy relaxation dynamics in correlated metals. Our work also highlights the need for improved theoretical understanding of such processes in interacting metals.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2904766022
source Freely Accessible Journals
subjects Channels
Coherent scattering
Diffusion rate
Electron scattering
Energy
Fermi liquids
Heat loss
Inelastic scattering
Metals
Momentum
Phonons
Spectroscopic analysis
Spectrum analysis
Strontium
title Energy Relaxation and dynamics in the correlated metal Sr\(_2\)RuO\(_4\) via THz two-dimensional coherent spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Energy%20Relaxation%20and%20dynamics%20in%20the%20correlated%20metal%20Sr%5C(_2%5C)RuO%5C(_4%5C)%20via%20THz%20two-dimensional%20coherent%20spectroscopy&rft.jtitle=arXiv.org&rft.au=Barbalas,%20David&rft.date=2023-12-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2904766022%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904766022&rft_id=info:pmid/&rfr_iscdi=true