Hyper-parameter tuning for the long short-term memory algorithm
This research focuses on hyperparameter optimization for LSTM to forecast SARS-CoV-2 infection cases in the Russian Federation, aiming to determine the best combination of parameters for a well-fitting model. Using LSTM’s capability to analyze relationships within time series data, a bidirectional L...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research focuses on hyperparameter optimization for LSTM to forecast SARS-CoV-2 infection cases in the Russian Federation, aiming to determine the best combination of parameters for a well-fitting model. Using LSTM’s capability to analyze relationships within time series data, a bidirectional LSTM-based method is introduced for predicting daily infection cases. The study evaluates nearly 10 unique forecasting models and conducts a comprehensive analysis and comparison of their results. The Bidirectional LSTM model proves to be a reliable approach for forecasting daily SARS-CoV-2 infection cases in Russia, displaying the highest prediction accuracy among the tested models. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0181833 |