Hyper-parameter tuning for the long short-term memory algorithm

This research focuses on hyperparameter optimization for LSTM to forecast SARS-CoV-2 infection cases in the Russian Federation, aiming to determine the best combination of parameters for a well-fitting model. Using LSTM’s capability to analyze relationships within time series data, a bidirectional L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Makarovskikh, Tatiana, Abotaleb, Mostafa, Albadran, Zainalabideen, Ramadhan, Ali J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research focuses on hyperparameter optimization for LSTM to forecast SARS-CoV-2 infection cases in the Russian Federation, aiming to determine the best combination of parameters for a well-fitting model. Using LSTM’s capability to analyze relationships within time series data, a bidirectional LSTM-based method is introduced for predicting daily infection cases. The study evaluates nearly 10 unique forecasting models and conducts a comprehensive analysis and comparison of their results. The Bidirectional LSTM model proves to be a reliable approach for forecasting daily SARS-CoV-2 infection cases in Russia, displaying the highest prediction accuracy among the tested models.
ISSN:0094-243X
1551-7616
DOI:10.1063/5.0181833