Carbon steel anticorrosion performance and mechanism of sodium lignosulfonate
Lignin is a typical biological macromolecule with a three-dimensional network structure and abundant functional groups. It has excellent ionic complexation ability and amphiphilic molecular structure characteristics. In this study, the carbon steel anticorrosion performance of sodium lignosulfonate...
Gespeichert in:
Veröffentlicht in: | Rare metals 2024, Vol.43 (1), p.356-365 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lignin is a typical biological macromolecule with a three-dimensional network structure and abundant functional groups. It has excellent ionic complexation ability and amphiphilic molecular structure characteristics. In this study, the carbon steel anticorrosion performance of sodium lignosulfonate (SLS) in an acid solution was evaluated using the weight loss method, electrochemical measurements, scanning vibration electrode technique (SVET), and surface characterization methods. SLS exhibited excellent corrosion inhibition efficiency for Q235 carbon steel in 1 mol·L
-1
HCl, reaching a maximum value of 98%. A low SLS concentration of 20 mg·L
-1
resulted in the maximum corrosion inhibition efficiency, which remained nearly constant at higher SLS concentrations. The SVET test demonstrated that the formation of an SLS adsorption film can impede corrosion. This study confirms the significance of the application of green biomass resources in the field of metal corrosion protection and green functional materials.
Graphical abstract |
---|---|
ISSN: | 1001-0521 1867-7185 |
DOI: | 10.1007/s12598-023-02404-y |