Assessment of polycarbonate material as a sustainable substitute for glazing in hot climates

In modern buildings, it is evident that exterior glazing is highly desirable to enhance the visual environment and provide daylight. This study investigates the energy performance of polycarbonate glazing as a potential substitute for conventional glass. A detailed energy analysis is conducted using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of sustainable energy 2023-12, Vol.42 (1), p.954-974
Hauptverfasser: Mohammed, Mohammed Alhaji, Menkabo, Mazin M., Budaiwi, Ismail M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In modern buildings, it is evident that exterior glazing is highly desirable to enhance the visual environment and provide daylight. This study investigates the energy performance of polycarbonate glazing as a potential substitute for conventional glass. A detailed energy analysis is conducted using a design-builder simulation tool to simulate the performance of multiwall polycarbonate sheet and normal glass for a model residential building. The result shows that the polycarbonate sheet outperforms normal glass. The wall systems' total annual cooling energy consumption for 16 mm triple 5-wall x-structure polycarbonate and the 3 mm regular single clear glass was 25,834 kWh and 39,565.18 kWh, respectively, resulting in 35% energy savings. Similarly, the skylights' cooling energy consumption for the same polycarbonate types was 35,776.47 kWh and 63,340.74 kWh, respectively, resulting in 44% energy savings. The impact of aluminum and uPVC framings was insignificant. Therefore, polycarbonate sheets are an excellent alternative to glass.
ISSN:1478-6451
1478-646X
DOI:10.1080/14786451.2023.2246092