A spatial mutation model with increasing mutation rates

We consider a spatial model of cancer in which cells are points on the d-dimensional torus $\mathcal{T}=[0,L]^d$ , and each cell with $k-1$ mutations acquires a kth mutation at rate $\mu_k$ . We assume that the mutation rates $\mu_k$ are increasing, and we find the asymptotic waiting time for the fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2023-12, Vol.60 (4), p.1157-1180
Hauptverfasser: Chao, Brian, Schweinsberg, Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a spatial model of cancer in which cells are points on the d-dimensional torus $\mathcal{T}=[0,L]^d$ , and each cell with $k-1$ mutations acquires a kth mutation at rate $\mu_k$ . We assume that the mutation rates $\mu_k$ are increasing, and we find the asymptotic waiting time for the first cell to acquire k mutations as the torus volume tends to infinity. This paper generalizes results on waiting for $k\geq 3$ mutations in Foo et al. (2020), which considered the case in which all of the mutation rates $\mu_k$ are the same. In addition, we find the limiting distribution of the spatial distances between mutations for certain values of the mutation rates.
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2022.120