Singular Hall response from a correlated ferromagnetic flat nodal-line semimetal

Topological quantum phases have been largely understood in weakly correlated systems, which have identified various quantum phenomena such as spin Hall effect, protected transport of helical fermions, and topological superconductivity. Robust ferromagnetic order in correlated topological materials p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Cho, Woohyun, Yoon-Gu, Kang, Cha, Jaehun, Lee, Dong Hyun David, Kiem, Do Hoon, Oh, Jaewhan, Park, Jongho, Kim, Changyoung, Yang, Yongsoo, Yeong Kwan Kim, Han, Myung Joon, Yang, Heejun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Topological quantum phases have been largely understood in weakly correlated systems, which have identified various quantum phenomena such as spin Hall effect, protected transport of helical fermions, and topological superconductivity. Robust ferromagnetic order in correlated topological materials particularly attracts attention, as it can provide a versatile platform for novel quantum devices. Here, we report singular Hall response arising from a unique band structure of flat topological nodal lines in combination with electron correlation in an itinerant, van der Waals ferromagnetic semimetal, Fe3GaTe2, with a high Curie temperature of Tc=360 K. High anomalous Hall conductivity violating the conventional scaling, resistivity upturn at low temperature, and a large Sommerfeld coefficient are observed in Fe3GaTe2, which implies heavy fermion features in this ferromagnetic topological material. Our circular dichroism in angle-resolved photoemission spectroscopy and theoretical calculations support the original electronic features in the material. Thus, low-dimensional Fe3GaTe2 with electronic correlation, topology, and room-temperature ferromagnetic order appears to be a promising candidate for robust quantum devices.
ISSN:2331-8422