Linear and Nonlinear Development of Bending Perturbations in a Fluid-Conveying Pipe with Variable Elastic Properties

We consider bending vibrations of a fluid-conveying pipe resting on an elastic foundation with nonuniform elasticity coefficient. Previously A. G. Kulikovskii showed analytically that the elasticity parameters can be distributed in such a way that at every point the system is either locally stable o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Steklov Institute of Mathematics 2023-09, Vol.322 (1), p.4-17
Hauptverfasser: Abdul’manov, K. E., Vedeneev, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider bending vibrations of a fluid-conveying pipe resting on an elastic foundation with nonuniform elasticity coefficient. Previously A. G. Kulikovskii showed analytically that the elasticity parameters can be distributed in such a way that at every point the system is either locally stable or convectively unstable. In this case, despite the absence of local absolute instability, there exists a global growing mode whose formation is associated with the points of internal reflection of waves. In the present paper, we perform a numerical simulation of the development of the initial perturbation in such a system. In the linear formulation we demonstrate how the perturbation is transformed into a growing eigenmode after a series of reflections and passages through a region of local instability. In the nonlinear formulation, where the nonlinear tension of the pipe is taken into account within the von Kármán model, we show that the perturbation growth is limited; in this case the vibrations acquire a quasi-chaotic character but do not leave the region bounded by the internal reflection points determined by the linearized problem.
ISSN:0081-5438
1531-8605
DOI:10.1134/S0081543823040028