34 Severity of Traumatic Brain Injury Predicts Neurobehavioral Outcomes and White Matter Microstructure

Objective:Pediatric traumatic brain injury (TBI) is the leading cause of disability in children under the age of 15, often resulting in executive function deficits and poor behavioral outcomes. Damage to white matter tracts may be a driving force behind these difficulties. We examined if whether 1)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the International Neuropsychological Society 2023-11, Vol.29 (s1), p.142-143
Hauptverfasser: Friedman, Julia, Vannatta, Kathryn, Cunningham, William A, Wilde, Elisabeth A, Yates, Keith Owen, Hoskinson, Kristen R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective:Pediatric traumatic brain injury (TBI) is the leading cause of disability in children under the age of 15, often resulting in executive function deficits and poor behavioral outcomes. Damage to white matter tracts may be a driving force behind these difficulties. We examined if whether 1) greater TBI severity was associated with worse neurobehavioral outcome, 2) greater TBI severity was associated with tract-based white matter microstructure, and 3) worse neurobehavioral outcome was associated with white matter microstructure.Participants and Methods:Twelve children with complicated-mild TBI (cmTBI; Mage=12.59, nmale=9), 17 with moderate-to-severe TBI (msTBI; Mage =11.50, nmale=11), and 21 with orthopedic injury (OI; Mage =11.60, nmale=16), 3.94 years post injury on average, were recruited from a large midwestern children’s hospital with a Level 1 Trauma Center. Parents completed the Behavior Rating Inventory of Executive Function (BRIEF) and Child Behavior Checklist (CBCL) while children completed 64-direction diffusion tensor imaging in a Siemens 3T scanner. White matter microstructure was quantified with FMRIB’s Diffusion Toolbox (FSLv6.0.4). Tract-Based Spatial Statistics computed fractional anisotropy (FA) and mean diffusivity (MD) for the cingulum bundle (CB), inferior fronto-occipital fasciculus (IFOF), superior longitudinal fasciculus (SLF), and uncinate fasciculus (UF), bilaterally.Results:Group differences were assessed using one-way ANOVA. Children with msTBI were rated as having worse Sluggish Cognitive Tempo on the CBCL than children with cmTBI and OI (p=.02, eta2=.143); no other parent-rated differences reached significance. Group differences were found in left SLF FA (p=.031; msTBIcmTBI=OI). Bivariate correlations assessed cross-domain associations. Higher left IFOF FA was associated with better BRIEF Metacognitive Skills (r=-.301, p=.030) and CBCL School Competence (r=.280; p=.049). Higher left SLF FA was associated with better BRIEF Behavioral Regulation and Metacognitive Skills (r=-.331, p=.017 and r=-.291, p=.036, respectively), and CBCL School Competence and Attention Problems (r=.398, p=.004 and r=-.435, p=.001, respectively). Similarly, higher right UF FA was broadly associated with better neurobehavioral outcomes, including Behavioral Regulat
ISSN:1355-6177
1469-7661
DOI:10.1017/S1355617723002382