25 High-resolution MRI Reveals Selective Patterns of Hippocampal Subfield Atrophy in Focal Epilepsy

Objective:Hippocampal pathology is a consistent feature in persons with temporal lobe epilepsy (TLE) and a strong biomarker of memory impairment. Histopathological studies have identified selective patterns of cell loss across hippocampal subfields in TLE, the most common being cellular loss in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the International Neuropsychological Society 2023-11, Vol.29 (s1), p.25-26
Hauptverfasser: Schadler, Adam, Kaestner, Erik, Stasenko, Alena, Smith, Christine N., Tallman, Catherine, Pedersen, Nigel P., Hakimian, Shahin, Kim, Michelle S., Peterson, Daniel J, Grabowski, Thomas J., Drane, Daniel L., McDonald, Carrie R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective:Hippocampal pathology is a consistent feature in persons with temporal lobe epilepsy (TLE) and a strong biomarker of memory impairment. Histopathological studies have identified selective patterns of cell loss across hippocampal subfields in TLE, the most common being cellular loss in the cornu ammonis 1 (CA1) and dentage gyrus (DG). Structural neuroimaging provides a non-invasive method to understand hippocampal pathology, but traditionally only at a whole-hippocampal level. However, recent methodological advances have enabled the non-invasive quantification of subfield pathology in patients, enabling potential integration into clinical workflow. In this study, we characterize patterns of hippocampal subfield atrophy in patients with TLE and examine the associations between subfield atrophy and clinical characteristics.Participants and Methods:High-resolution T2 and T1-weighted MRI were collected from 31 participants (14 left TLE; 6 right TLE; 11 healthy controls [HC], aged 18-61 years). Reconstructions of hippocampal subfields and estimates of their volumes were derived using the Automated Segmentation of Hippocampal Subfields (ASHS) pipeline. Total hippocampal volume was calculated by combining estimates of the subfields CA1-3, DG, and subiculum. To control for variations in head size, all volume estimates were divided by estimates of total brain volume. To assess disease effects on hippocampal atrophy, hippocampi were recoded as either ipsilateral or contralateral to the side of seizure focus. Two sample t-tests at a whole-hippocampus level were used to test for ipsilateral and contralateral volume loss in patients relative to HC. To assess whether we replicated the selective histopathological patterns of subfield atrophy, we carried out mixed-effects ANOVA, coding for an interaction between diagnostic group and hippocampal subfield. Finally, to assess effects of disease load, non-parametric correlations were performed between subfield volume and age of first seizure and duration of illness.Results:Patients had significantly smaller total ipsilateral hippocampal volume compared with HC (d=1.23, p
ISSN:1355-6177
1469-7661
DOI:10.1017/S135561772300108X