Derivation and simulation of a two-phase fluid deformable surface model
To explore the impact of surface viscosity on coexisting fluid domains in biomembranes we consider two-phase fluid deformable surfaces as model systems for biomembranes. Such surfaces are modelled by incompressible surface Navier–Stokes–Cahn–Hilliard-like equations with bending forces. We derive thi...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2023-12, Vol.977, Article A41 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 977 |
creator | Bachini, Elena Krause, Veit Nitschke, Ingo Voigt, Axel |
description | To explore the impact of surface viscosity on coexisting fluid domains in biomembranes we consider two-phase fluid deformable surfaces as model systems for biomembranes. Such surfaces are modelled by incompressible surface Navier–Stokes–Cahn–Hilliard-like equations with bending forces. We derive this model using the Lagrange–d’Alembert principle considering various dissipation mechanisms. The highly nonlinear model is solved numerically to explore the tight interplay between surface evolution, surface phase composition, surface curvature and surface hydrodynamics. It is demonstrated that hydrodynamics can enhance bulging and furrow formation, which both can further develop to pinch-offs. The numerical approach builds on a Taylor–Hood element for the surface Navier–Stokes part, a semi-implicit approach for the Cahn–Hilliard part, higher-order surface parametrizations, appropriate approximations of the geometric quantities, and mesh redistribution. We demonstrate convergence properties that are known to be optimal for simplified subproblems. |
doi_str_mv | 10.1017/jfm.2023.943 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2904106031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_943</cupid><sourcerecordid>2904106031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-6156c24ef5a005e55aa925eb1e85de5fcc8ef4338767c4e5785b26323980242c3</originalsourceid><addsrcrecordid>eNptkE1Lw0AURQdRsFZ3_oABtya--UyylKpVKLjR9TCZvNGUpFNnEsV_35QW3Li6PDjvXjiEXDPIGbDibu37nAMXeSXFCZkxqaus0FKdkhkA5xljHM7JRUprACagKmZk-YCx_bZDGzbUbhqa2n7sDmfw1NLhJ2TbT5uQ-m5sG9qgD7G3dYc0jdFbh7QPDXaX5MzbLuHVMefk_enxbfGcrV6XL4v7VeaEhCHTTGnHJXplARQqZW3FFdYMS9Wg8s6V6KUQZaELJ1EVpaq5FlxUJXDJnZiTm0PvNoavEdNg1mGMm2nS8AokAw2CTdTtgXIxpBTRm21sext_DQOzV2UmVWavykyqJjw_4ravY9t84F_rvw87P29qRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2904106031</pqid></control><display><type>article</type><title>Derivation and simulation of a two-phase fluid deformable surface model</title><source>Cambridge University Press Journals Complete</source><creator>Bachini, Elena ; Krause, Veit ; Nitschke, Ingo ; Voigt, Axel</creator><creatorcontrib>Bachini, Elena ; Krause, Veit ; Nitschke, Ingo ; Voigt, Axel</creatorcontrib><description>To explore the impact of surface viscosity on coexisting fluid domains in biomembranes we consider two-phase fluid deformable surfaces as model systems for biomembranes. Such surfaces are modelled by incompressible surface Navier–Stokes–Cahn–Hilliard-like equations with bending forces. We derive this model using the Lagrange–d’Alembert principle considering various dissipation mechanisms. The highly nonlinear model is solved numerically to explore the tight interplay between surface evolution, surface phase composition, surface curvature and surface hydrodynamics. It is demonstrated that hydrodynamics can enhance bulging and furrow formation, which both can further develop to pinch-offs. The numerical approach builds on a Taylor–Hood element for the surface Navier–Stokes part, a semi-implicit approach for the Cahn–Hilliard part, higher-order surface parametrizations, appropriate approximations of the geometric quantities, and mesh redistribution. We demonstrate convergence properties that are known to be optimal for simplified subproblems.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.943</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Deformation ; Evolution ; Finite element method ; Fluid flow ; Fluid mechanics ; Formability ; Hydrodynamics ; Incompressible flow ; JFM Papers ; Lipids ; Mathematical models ; Navier-Stokes equations ; Phase composition ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2023-12, Vol.977, Article A41</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press.</rights><rights>The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-6156c24ef5a005e55aa925eb1e85de5fcc8ef4338767c4e5785b26323980242c3</citedby><cites>FETCH-LOGICAL-c340t-6156c24ef5a005e55aa925eb1e85de5fcc8ef4338767c4e5785b26323980242c3</cites><orcidid>0000-0003-2564-3697 ; 0000-0001-8610-9426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023009436/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Bachini, Elena</creatorcontrib><creatorcontrib>Krause, Veit</creatorcontrib><creatorcontrib>Nitschke, Ingo</creatorcontrib><creatorcontrib>Voigt, Axel</creatorcontrib><title>Derivation and simulation of a two-phase fluid deformable surface model</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>To explore the impact of surface viscosity on coexisting fluid domains in biomembranes we consider two-phase fluid deformable surfaces as model systems for biomembranes. Such surfaces are modelled by incompressible surface Navier–Stokes–Cahn–Hilliard-like equations with bending forces. We derive this model using the Lagrange–d’Alembert principle considering various dissipation mechanisms. The highly nonlinear model is solved numerically to explore the tight interplay between surface evolution, surface phase composition, surface curvature and surface hydrodynamics. It is demonstrated that hydrodynamics can enhance bulging and furrow formation, which both can further develop to pinch-offs. The numerical approach builds on a Taylor–Hood element for the surface Navier–Stokes part, a semi-implicit approach for the Cahn–Hilliard part, higher-order surface parametrizations, appropriate approximations of the geometric quantities, and mesh redistribution. We demonstrate convergence properties that are known to be optimal for simplified subproblems.</description><subject>Deformation</subject><subject>Evolution</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Formability</subject><subject>Hydrodynamics</subject><subject>Incompressible flow</subject><subject>JFM Papers</subject><subject>Lipids</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Phase composition</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1Lw0AURQdRsFZ3_oABtya--UyylKpVKLjR9TCZvNGUpFNnEsV_35QW3Li6PDjvXjiEXDPIGbDibu37nAMXeSXFCZkxqaus0FKdkhkA5xljHM7JRUprACagKmZk-YCx_bZDGzbUbhqa2n7sDmfw1NLhJ2TbT5uQ-m5sG9qgD7G3dYc0jdFbh7QPDXaX5MzbLuHVMefk_enxbfGcrV6XL4v7VeaEhCHTTGnHJXplARQqZW3FFdYMS9Wg8s6V6KUQZaELJ1EVpaq5FlxUJXDJnZiTm0PvNoavEdNg1mGMm2nS8AokAw2CTdTtgXIxpBTRm21sext_DQOzV2UmVWavykyqJjw_4ravY9t84F_rvw87P29qRA</recordid><startdate>20231225</startdate><enddate>20231225</enddate><creator>Bachini, Elena</creator><creator>Krause, Veit</creator><creator>Nitschke, Ingo</creator><creator>Voigt, Axel</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-2564-3697</orcidid><orcidid>https://orcid.org/0000-0001-8610-9426</orcidid></search><sort><creationdate>20231225</creationdate><title>Derivation and simulation of a two-phase fluid deformable surface model</title><author>Bachini, Elena ; Krause, Veit ; Nitschke, Ingo ; Voigt, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-6156c24ef5a005e55aa925eb1e85de5fcc8ef4338767c4e5785b26323980242c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deformation</topic><topic>Evolution</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Formability</topic><topic>Hydrodynamics</topic><topic>Incompressible flow</topic><topic>JFM Papers</topic><topic>Lipids</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Phase composition</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bachini, Elena</creatorcontrib><creatorcontrib>Krause, Veit</creatorcontrib><creatorcontrib>Nitschke, Ingo</creatorcontrib><creatorcontrib>Voigt, Axel</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bachini, Elena</au><au>Krause, Veit</au><au>Nitschke, Ingo</au><au>Voigt, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation and simulation of a two-phase fluid deformable surface model</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-12-25</date><risdate>2023</risdate><volume>977</volume><artnum>A41</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>To explore the impact of surface viscosity on coexisting fluid domains in biomembranes we consider two-phase fluid deformable surfaces as model systems for biomembranes. Such surfaces are modelled by incompressible surface Navier–Stokes–Cahn–Hilliard-like equations with bending forces. We derive this model using the Lagrange–d’Alembert principle considering various dissipation mechanisms. The highly nonlinear model is solved numerically to explore the tight interplay between surface evolution, surface phase composition, surface curvature and surface hydrodynamics. It is demonstrated that hydrodynamics can enhance bulging and furrow formation, which both can further develop to pinch-offs. The numerical approach builds on a Taylor–Hood element for the surface Navier–Stokes part, a semi-implicit approach for the Cahn–Hilliard part, higher-order surface parametrizations, appropriate approximations of the geometric quantities, and mesh redistribution. We demonstrate convergence properties that are known to be optimal for simplified subproblems.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.943</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0003-2564-3697</orcidid><orcidid>https://orcid.org/0000-0001-8610-9426</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2023-12, Vol.977, Article A41 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2904106031 |
source | Cambridge University Press Journals Complete |
subjects | Deformation Evolution Finite element method Fluid flow Fluid mechanics Formability Hydrodynamics Incompressible flow JFM Papers Lipids Mathematical models Navier-Stokes equations Phase composition Viscosity |
title | Derivation and simulation of a two-phase fluid deformable surface model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20and%20simulation%20of%20a%20two-phase%20fluid%20deformable%20surface%20model&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Bachini,%20Elena&rft.date=2023-12-25&rft.volume=977&rft.artnum=A41&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.943&rft_dat=%3Cproquest_cross%3E2904106031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2904106031&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_943&rfr_iscdi=true |