Derivation and simulation of a two-phase fluid deformable surface model
To explore the impact of surface viscosity on coexisting fluid domains in biomembranes we consider two-phase fluid deformable surfaces as model systems for biomembranes. Such surfaces are modelled by incompressible surface Navier–Stokes–Cahn–Hilliard-like equations with bending forces. We derive thi...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2023-12, Vol.977, Article A41 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To explore the impact of surface viscosity on coexisting fluid domains in biomembranes we consider two-phase fluid deformable surfaces as model systems for biomembranes. Such surfaces are modelled by incompressible surface Navier–Stokes–Cahn–Hilliard-like equations with bending forces. We derive this model using the Lagrange–d’Alembert principle considering various dissipation mechanisms. The highly nonlinear model is solved numerically to explore the tight interplay between surface evolution, surface phase composition, surface curvature and surface hydrodynamics. It is demonstrated that hydrodynamics can enhance bulging and furrow formation, which both can further develop to pinch-offs. The numerical approach builds on a Taylor–Hood element for the surface Navier–Stokes part, a semi-implicit approach for the Cahn–Hilliard part, higher-order surface parametrizations, appropriate approximations of the geometric quantities, and mesh redistribution. We demonstrate convergence properties that are known to be optimal for simplified subproblems. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2023.943 |