Surfaces of Osculating Circles in Euclidean Space
The aim of this paper is to define a new class of surfaces in Euclidean space using the concept of osculating circle. Given a regular curve C , the surface of osculating circles generated by C is the set of all osculating circles at all points of C . It is proved that these surfaces contain a one-pa...
Gespeichert in:
Veröffentlicht in: | Vietnam journal of mathematics 2024-03, Vol.52 (1), p.197-210 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this paper is to define a new class of surfaces in Euclidean space using the concept of osculating circle. Given a regular curve
C
, the surface of osculating circles generated by
C
is the set of all osculating circles at all points of
C
. It is proved that these surfaces contain a one-parametric family of planar lines of curvature. A classification of surfaces of osculating circles is given in the family of canal surfaces, Weingarten surfaces, surfaces with constant Gauss curvature and surfaces with constant mean curvature. |
---|---|
ISSN: | 2305-221X 2305-2228 |
DOI: | 10.1007/s10013-022-00585-0 |