General Local Cohomology Modules with Small Dimensions
Let Φ be a system of ideals of a noetherian ring R and M a finitely generated R -module. We introduce the notion n -depth(Φ, M ) and show that inf { i | dim Supp R H Φ i ( M ) > n } = n -depth ( Φ , M ) , n = − 1,0,1. If ( R , m ) is a complete local ring, n is a non negative integer and M is a f...
Gespeichert in:
Veröffentlicht in: | Vietnam journal of mathematics 2024-03, Vol.52 (1), p.139-148 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Φ be a system of ideals of a noetherian ring
R
and
M
a finitely generated
R
-module. We introduce the notion
n
-depth(Φ,
M
) and show that
inf
{
i
|
dim
Supp
R
H
Φ
i
(
M
)
>
n
}
=
n
-depth
(
Φ
,
M
)
,
n
= − 1,0,1. If
(
R
,
m
)
is a complete local ring,
n
is a non negative integer and
M
is a finitely generated
R
-module such that
dim
Supp
R
H
Φ
i
(
M
)
≤
2
for all
i
<
n
, then
H
Φ
i
(
M
)
is Φ-weakly cofinite for all
i
<
n
. |
---|---|
ISSN: | 2305-221X 2305-2228 |
DOI: | 10.1007/s10013-022-00582-3 |