Euler–Lagrange–Herglotz equations on Lie algebroids
We introduce Euler–Lagrange–Herglotz equations on Lie algebroids. The methodology is to extend the Jacobi structure from T Q × R and T ∗ Q × R to A × R and A ∗ × R , respectively, where A is a Lie algebroid and A ∗ carries the associated Poisson structure. We see that A ∗ × R possesses a natural Jac...
Gespeichert in:
Veröffentlicht in: | Analysis and mathematical physics 2024-02, Vol.14 (1), Article 3 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce Euler–Lagrange–Herglotz equations on Lie algebroids. The methodology is to extend the Jacobi structure from
T
Q
×
R
and
T
∗
Q
×
R
to
A
×
R
and
A
∗
×
R
, respectively, where
A
is a Lie algebroid and
A
∗
carries the associated Poisson structure. We see that
A
∗
×
R
possesses a natural Jacobi structure from where we are able to model dissipative mechanical systems on Lie algebroids, generalizing previous models on
T
Q
×
R
and introducing new ones as for instance for reduced systems on Lie algebras, semidirect products (action Lie algebroids) and Atiyah bundles. |
---|---|
ISSN: | 1664-2368 1664-235X |
DOI: | 10.1007/s13324-023-00859-x |