GDENet: Graph Differential Equation Network for Traffic Flow Prediction

The accurate prediction of traffic flow is paramount for the advancement of intelligent transportation systems. Despite this, current prediction models only account for either temporal or spatial features in isolation, without considering their interaction, impeding the model’s ability to express it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2023, Vol.2023 (1)
Hauptverfasser: Miao, Yanming, Tang, Xianghong, Wang, Qi, Yu, Liya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title International journal of intelligent systems
container_volume 2023
creator Miao, Yanming
Tang, Xianghong
Wang, Qi
Yu, Liya
description The accurate prediction of traffic flow is paramount for the advancement of intelligent transportation systems. Despite this, current prediction models only account for either temporal or spatial features in isolation, without considering their interaction, impeding the model’s ability to express itself. In light of this, we propose the graph differential equations network (GDENet), an approach that can effectively mine spatiotemporal correlation. Specifically, we propose a spatiotemporal feature integrator (STFI), which alleviates the error caused by the deviation of the sampling distribution from the overall distribution. By incorporating temporal information into the model for training and combining it with spatial features, we thoroughly explore the spatiotemporal intrinsic association. When compared to state-of-the-art methods, our proposed algorithm reduces memory consumption and elevates computational efficiency and the practical value. We conduct experiments with real-world datasets, and our proposed model outperformed advanced prediction models.
doi_str_mv 10.1155/2023/7099652
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2902769380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902769380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-62eff68542e56b65099ef5620ee2eb54f94d5e94d401177a71eaec26523366313</originalsourceid><addsrcrecordid>eNp90LtOwzAUBmALgUQobDyAJUYI9SW2EzbUpgGpAoYisVlucqy6lLh1UlW8PY7ameWc5dO5_AjdUvJIqRBjRhgfK1IUUrAzlFBS5Cml9OscJSTPszSnil-iq65bE0KpykSCqmpavkH_hKtgtis8ddZCgLZ3ZoPL3d70zrc4goMP39j6gBfBWOtqPNv4A_4I0Lh6MNfowppNBzenPkKfs3IxeUnn79Xr5Hme1pyrPpUMrJW5yBgIuZQi3gpWSEYAGCxFZousERBLNhyojKJgoGbxH86l5JSP0N1x7jb43R66Xq_9PrRxpWYFYUoWPCdRPRxVHXzXBbB6G9yPCb-aEj1EpYeo9CmqyO-PfOXaxhzc__oPOTpmWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902769380</pqid></control><display><type>article</type><title>GDENet: Graph Differential Equation Network for Traffic Flow Prediction</title><source>Wiley Online Library Open Access</source><source>ProQuest Central</source><creator>Miao, Yanming ; Tang, Xianghong ; Wang, Qi ; Yu, Liya</creator><contributor>Prakash, Surya</contributor><creatorcontrib>Miao, Yanming ; Tang, Xianghong ; Wang, Qi ; Yu, Liya ; Prakash, Surya</creatorcontrib><description>The accurate prediction of traffic flow is paramount for the advancement of intelligent transportation systems. Despite this, current prediction models only account for either temporal or spatial features in isolation, without considering their interaction, impeding the model’s ability to express itself. In light of this, we propose the graph differential equations network (GDENet), an approach that can effectively mine spatiotemporal correlation. Specifically, we propose a spatiotemporal feature integrator (STFI), which alleviates the error caused by the deviation of the sampling distribution from the overall distribution. By incorporating temporal information into the model for training and combining it with spatial features, we thoroughly explore the spatiotemporal intrinsic association. When compared to state-of-the-art methods, our proposed algorithm reduces memory consumption and elevates computational efficiency and the practical value. We conduct experiments with real-world datasets, and our proposed model outperformed advanced prediction models.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1155/2023/7099652</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Deep learning ; Differential equations ; Intelligent transportation systems ; Machine learning ; Neural networks ; Ordinary differential equations ; Prediction models ; R&amp;D ; Research &amp; development ; Statistical analysis ; Traffic control ; Traffic flow ; Transportation networks</subject><ispartof>International journal of intelligent systems, 2023, Vol.2023 (1)</ispartof><rights>Copyright © 2023 Yanming Miao et al.</rights><rights>Copyright © 2023 Yanming Miao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-62eff68542e56b65099ef5620ee2eb54f94d5e94d401177a71eaec26523366313</citedby><cites>FETCH-LOGICAL-c337t-62eff68542e56b65099ef5620ee2eb54f94d5e94d401177a71eaec26523366313</cites><orcidid>0009-0007-5901-2945 ; 0000-0002-6269-0196 ; 0000-0002-5212-8546 ; 0000-0002-3961-5649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2902769380/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2902769380?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,21367,27900,27901,27902,33721,43781,74045</link.rule.ids></links><search><contributor>Prakash, Surya</contributor><creatorcontrib>Miao, Yanming</creatorcontrib><creatorcontrib>Tang, Xianghong</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Yu, Liya</creatorcontrib><title>GDENet: Graph Differential Equation Network for Traffic Flow Prediction</title><title>International journal of intelligent systems</title><description>The accurate prediction of traffic flow is paramount for the advancement of intelligent transportation systems. Despite this, current prediction models only account for either temporal or spatial features in isolation, without considering their interaction, impeding the model’s ability to express itself. In light of this, we propose the graph differential equations network (GDENet), an approach that can effectively mine spatiotemporal correlation. Specifically, we propose a spatiotemporal feature integrator (STFI), which alleviates the error caused by the deviation of the sampling distribution from the overall distribution. By incorporating temporal information into the model for training and combining it with spatial features, we thoroughly explore the spatiotemporal intrinsic association. When compared to state-of-the-art methods, our proposed algorithm reduces memory consumption and elevates computational efficiency and the practical value. We conduct experiments with real-world datasets, and our proposed model outperformed advanced prediction models.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Deep learning</subject><subject>Differential equations</subject><subject>Intelligent transportation systems</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Ordinary differential equations</subject><subject>Prediction models</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Statistical analysis</subject><subject>Traffic control</subject><subject>Traffic flow</subject><subject>Transportation networks</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp90LtOwzAUBmALgUQobDyAJUYI9SW2EzbUpgGpAoYisVlucqy6lLh1UlW8PY7ameWc5dO5_AjdUvJIqRBjRhgfK1IUUrAzlFBS5Cml9OscJSTPszSnil-iq65bE0KpykSCqmpavkH_hKtgtis8ddZCgLZ3ZoPL3d70zrc4goMP39j6gBfBWOtqPNv4A_4I0Lh6MNfowppNBzenPkKfs3IxeUnn79Xr5Hme1pyrPpUMrJW5yBgIuZQi3gpWSEYAGCxFZousERBLNhyojKJgoGbxH86l5JSP0N1x7jb43R66Xq_9PrRxpWYFYUoWPCdRPRxVHXzXBbB6G9yPCb-aEj1EpYeo9CmqyO-PfOXaxhzc__oPOTpmWg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Miao, Yanming</creator><creator>Tang, Xianghong</creator><creator>Wang, Qi</creator><creator>Yu, Liya</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0009-0007-5901-2945</orcidid><orcidid>https://orcid.org/0000-0002-6269-0196</orcidid><orcidid>https://orcid.org/0000-0002-5212-8546</orcidid><orcidid>https://orcid.org/0000-0002-3961-5649</orcidid></search><sort><creationdate>2023</creationdate><title>GDENet: Graph Differential Equation Network for Traffic Flow Prediction</title><author>Miao, Yanming ; Tang, Xianghong ; Wang, Qi ; Yu, Liya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-62eff68542e56b65099ef5620ee2eb54f94d5e94d401177a71eaec26523366313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Deep learning</topic><topic>Differential equations</topic><topic>Intelligent transportation systems</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Ordinary differential equations</topic><topic>Prediction models</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Statistical analysis</topic><topic>Traffic control</topic><topic>Traffic flow</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Yanming</creatorcontrib><creatorcontrib>Tang, Xianghong</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Yu, Liya</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Yanming</au><au>Tang, Xianghong</au><au>Wang, Qi</au><au>Yu, Liya</au><au>Prakash, Surya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GDENet: Graph Differential Equation Network for Traffic Flow Prediction</atitle><jtitle>International journal of intelligent systems</jtitle><date>2023</date><risdate>2023</risdate><volume>2023</volume><issue>1</issue><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>The accurate prediction of traffic flow is paramount for the advancement of intelligent transportation systems. Despite this, current prediction models only account for either temporal or spatial features in isolation, without considering their interaction, impeding the model’s ability to express itself. In light of this, we propose the graph differential equations network (GDENet), an approach that can effectively mine spatiotemporal correlation. Specifically, we propose a spatiotemporal feature integrator (STFI), which alleviates the error caused by the deviation of the sampling distribution from the overall distribution. By incorporating temporal information into the model for training and combining it with spatial features, we thoroughly explore the spatiotemporal intrinsic association. When compared to state-of-the-art methods, our proposed algorithm reduces memory consumption and elevates computational efficiency and the practical value. We conduct experiments with real-world datasets, and our proposed model outperformed advanced prediction models.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/7099652</doi><orcidid>https://orcid.org/0009-0007-5901-2945</orcidid><orcidid>https://orcid.org/0000-0002-6269-0196</orcidid><orcidid>https://orcid.org/0000-0002-5212-8546</orcidid><orcidid>https://orcid.org/0000-0002-3961-5649</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-8173
ispartof International journal of intelligent systems, 2023, Vol.2023 (1)
issn 0884-8173
1098-111X
language eng
recordid cdi_proquest_journals_2902769380
source Wiley Online Library Open Access; ProQuest Central
subjects Accuracy
Algorithms
Artificial intelligence
Deep learning
Differential equations
Intelligent transportation systems
Machine learning
Neural networks
Ordinary differential equations
Prediction models
R&D
Research & development
Statistical analysis
Traffic control
Traffic flow
Transportation networks
title GDENet: Graph Differential Equation Network for Traffic Flow Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GDENet:%20Graph%20Differential%20Equation%20Network%20for%20Traffic%20Flow%20Prediction&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Miao,%20Yanming&rft.date=2023&rft.volume=2023&rft.issue=1&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1155/2023/7099652&rft_dat=%3Cproquest_cross%3E2902769380%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902769380&rft_id=info:pmid/&rfr_iscdi=true