GDENet: Graph Differential Equation Network for Traffic Flow Prediction
The accurate prediction of traffic flow is paramount for the advancement of intelligent transportation systems. Despite this, current prediction models only account for either temporal or spatial features in isolation, without considering their interaction, impeding the model’s ability to express it...
Gespeichert in:
Veröffentlicht in: | International journal of intelligent systems 2023, Vol.2023 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | International journal of intelligent systems |
container_volume | 2023 |
creator | Miao, Yanming Tang, Xianghong Wang, Qi Yu, Liya |
description | The accurate prediction of traffic flow is paramount for the advancement of intelligent transportation systems. Despite this, current prediction models only account for either temporal or spatial features in isolation, without considering their interaction, impeding the model’s ability to express itself. In light of this, we propose the graph differential equations network (GDENet), an approach that can effectively mine spatiotemporal correlation. Specifically, we propose a spatiotemporal feature integrator (STFI), which alleviates the error caused by the deviation of the sampling distribution from the overall distribution. By incorporating temporal information into the model for training and combining it with spatial features, we thoroughly explore the spatiotemporal intrinsic association. When compared to state-of-the-art methods, our proposed algorithm reduces memory consumption and elevates computational efficiency and the practical value. We conduct experiments with real-world datasets, and our proposed model outperformed advanced prediction models. |
doi_str_mv | 10.1155/2023/7099652 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2902769380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902769380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-62eff68542e56b65099ef5620ee2eb54f94d5e94d401177a71eaec26523366313</originalsourceid><addsrcrecordid>eNp90LtOwzAUBmALgUQobDyAJUYI9SW2EzbUpgGpAoYisVlucqy6lLh1UlW8PY7ameWc5dO5_AjdUvJIqRBjRhgfK1IUUrAzlFBS5Cml9OscJSTPszSnil-iq65bE0KpykSCqmpavkH_hKtgtis8ddZCgLZ3ZoPL3d70zrc4goMP39j6gBfBWOtqPNv4A_4I0Lh6MNfowppNBzenPkKfs3IxeUnn79Xr5Hme1pyrPpUMrJW5yBgIuZQi3gpWSEYAGCxFZousERBLNhyojKJgoGbxH86l5JSP0N1x7jb43R66Xq_9PrRxpWYFYUoWPCdRPRxVHXzXBbB6G9yPCb-aEj1EpYeo9CmqyO-PfOXaxhzc__oPOTpmWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902769380</pqid></control><display><type>article</type><title>GDENet: Graph Differential Equation Network for Traffic Flow Prediction</title><source>Wiley Online Library Open Access</source><source>ProQuest Central</source><creator>Miao, Yanming ; Tang, Xianghong ; Wang, Qi ; Yu, Liya</creator><contributor>Prakash, Surya</contributor><creatorcontrib>Miao, Yanming ; Tang, Xianghong ; Wang, Qi ; Yu, Liya ; Prakash, Surya</creatorcontrib><description>The accurate prediction of traffic flow is paramount for the advancement of intelligent transportation systems. Despite this, current prediction models only account for either temporal or spatial features in isolation, without considering their interaction, impeding the model’s ability to express itself. In light of this, we propose the graph differential equations network (GDENet), an approach that can effectively mine spatiotemporal correlation. Specifically, we propose a spatiotemporal feature integrator (STFI), which alleviates the error caused by the deviation of the sampling distribution from the overall distribution. By incorporating temporal information into the model for training and combining it with spatial features, we thoroughly explore the spatiotemporal intrinsic association. When compared to state-of-the-art methods, our proposed algorithm reduces memory consumption and elevates computational efficiency and the practical value. We conduct experiments with real-world datasets, and our proposed model outperformed advanced prediction models.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1155/2023/7099652</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Deep learning ; Differential equations ; Intelligent transportation systems ; Machine learning ; Neural networks ; Ordinary differential equations ; Prediction models ; R&D ; Research & development ; Statistical analysis ; Traffic control ; Traffic flow ; Transportation networks</subject><ispartof>International journal of intelligent systems, 2023, Vol.2023 (1)</ispartof><rights>Copyright © 2023 Yanming Miao et al.</rights><rights>Copyright © 2023 Yanming Miao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-62eff68542e56b65099ef5620ee2eb54f94d5e94d401177a71eaec26523366313</citedby><cites>FETCH-LOGICAL-c337t-62eff68542e56b65099ef5620ee2eb54f94d5e94d401177a71eaec26523366313</cites><orcidid>0009-0007-5901-2945 ; 0000-0002-6269-0196 ; 0000-0002-5212-8546 ; 0000-0002-3961-5649</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2902769380/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2902769380?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,21367,27900,27901,27902,33721,43781,74045</link.rule.ids></links><search><contributor>Prakash, Surya</contributor><creatorcontrib>Miao, Yanming</creatorcontrib><creatorcontrib>Tang, Xianghong</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Yu, Liya</creatorcontrib><title>GDENet: Graph Differential Equation Network for Traffic Flow Prediction</title><title>International journal of intelligent systems</title><description>The accurate prediction of traffic flow is paramount for the advancement of intelligent transportation systems. Despite this, current prediction models only account for either temporal or spatial features in isolation, without considering their interaction, impeding the model’s ability to express itself. In light of this, we propose the graph differential equations network (GDENet), an approach that can effectively mine spatiotemporal correlation. Specifically, we propose a spatiotemporal feature integrator (STFI), which alleviates the error caused by the deviation of the sampling distribution from the overall distribution. By incorporating temporal information into the model for training and combining it with spatial features, we thoroughly explore the spatiotemporal intrinsic association. When compared to state-of-the-art methods, our proposed algorithm reduces memory consumption and elevates computational efficiency and the practical value. We conduct experiments with real-world datasets, and our proposed model outperformed advanced prediction models.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Deep learning</subject><subject>Differential equations</subject><subject>Intelligent transportation systems</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Ordinary differential equations</subject><subject>Prediction models</subject><subject>R&D</subject><subject>Research & development</subject><subject>Statistical analysis</subject><subject>Traffic control</subject><subject>Traffic flow</subject><subject>Transportation networks</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp90LtOwzAUBmALgUQobDyAJUYI9SW2EzbUpgGpAoYisVlucqy6lLh1UlW8PY7ameWc5dO5_AjdUvJIqRBjRhgfK1IUUrAzlFBS5Cml9OscJSTPszSnil-iq65bE0KpykSCqmpavkH_hKtgtis8ddZCgLZ3ZoPL3d70zrc4goMP39j6gBfBWOtqPNv4A_4I0Lh6MNfowppNBzenPkKfs3IxeUnn79Xr5Hme1pyrPpUMrJW5yBgIuZQi3gpWSEYAGCxFZousERBLNhyojKJgoGbxH86l5JSP0N1x7jb43R66Xq_9PrRxpWYFYUoWPCdRPRxVHXzXBbB6G9yPCb-aEj1EpYeo9CmqyO-PfOXaxhzc__oPOTpmWg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Miao, Yanming</creator><creator>Tang, Xianghong</creator><creator>Wang, Qi</creator><creator>Yu, Liya</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0009-0007-5901-2945</orcidid><orcidid>https://orcid.org/0000-0002-6269-0196</orcidid><orcidid>https://orcid.org/0000-0002-5212-8546</orcidid><orcidid>https://orcid.org/0000-0002-3961-5649</orcidid></search><sort><creationdate>2023</creationdate><title>GDENet: Graph Differential Equation Network for Traffic Flow Prediction</title><author>Miao, Yanming ; Tang, Xianghong ; Wang, Qi ; Yu, Liya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-62eff68542e56b65099ef5620ee2eb54f94d5e94d401177a71eaec26523366313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Deep learning</topic><topic>Differential equations</topic><topic>Intelligent transportation systems</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Ordinary differential equations</topic><topic>Prediction models</topic><topic>R&D</topic><topic>Research & development</topic><topic>Statistical analysis</topic><topic>Traffic control</topic><topic>Traffic flow</topic><topic>Transportation networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miao, Yanming</creatorcontrib><creatorcontrib>Tang, Xianghong</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Yu, Liya</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miao, Yanming</au><au>Tang, Xianghong</au><au>Wang, Qi</au><au>Yu, Liya</au><au>Prakash, Surya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GDENet: Graph Differential Equation Network for Traffic Flow Prediction</atitle><jtitle>International journal of intelligent systems</jtitle><date>2023</date><risdate>2023</risdate><volume>2023</volume><issue>1</issue><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>The accurate prediction of traffic flow is paramount for the advancement of intelligent transportation systems. Despite this, current prediction models only account for either temporal or spatial features in isolation, without considering their interaction, impeding the model’s ability to express itself. In light of this, we propose the graph differential equations network (GDENet), an approach that can effectively mine spatiotemporal correlation. Specifically, we propose a spatiotemporal feature integrator (STFI), which alleviates the error caused by the deviation of the sampling distribution from the overall distribution. By incorporating temporal information into the model for training and combining it with spatial features, we thoroughly explore the spatiotemporal intrinsic association. When compared to state-of-the-art methods, our proposed algorithm reduces memory consumption and elevates computational efficiency and the practical value. We conduct experiments with real-world datasets, and our proposed model outperformed advanced prediction models.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/7099652</doi><orcidid>https://orcid.org/0009-0007-5901-2945</orcidid><orcidid>https://orcid.org/0000-0002-6269-0196</orcidid><orcidid>https://orcid.org/0000-0002-5212-8546</orcidid><orcidid>https://orcid.org/0000-0002-3961-5649</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-8173 |
ispartof | International journal of intelligent systems, 2023, Vol.2023 (1) |
issn | 0884-8173 1098-111X |
language | eng |
recordid | cdi_proquest_journals_2902769380 |
source | Wiley Online Library Open Access; ProQuest Central |
subjects | Accuracy Algorithms Artificial intelligence Deep learning Differential equations Intelligent transportation systems Machine learning Neural networks Ordinary differential equations Prediction models R&D Research & development Statistical analysis Traffic control Traffic flow Transportation networks |
title | GDENet: Graph Differential Equation Network for Traffic Flow Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GDENet:%20Graph%20Differential%20Equation%20Network%20for%20Traffic%20Flow%20Prediction&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Miao,%20Yanming&rft.date=2023&rft.volume=2023&rft.issue=1&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1155/2023/7099652&rft_dat=%3Cproquest_cross%3E2902769380%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2902769380&rft_id=info:pmid/&rfr_iscdi=true |