Secure Federated Deep Reinforcement Learning with Blockchain

This paper introduces {\sf FedRLChain}, a novel framework for blockchain-based secure federated deep reinforcement learning, which allows users to securely and collaboratively train a Deep Reinforcement Learning (DRL) model by plugging appropriate aggregation and verification algorithms for specific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on services computing 2023-11, Vol.16 (6), p.1-14
Hauptverfasser: Chowdhury, Sujit, Mukherjee, Arnab, Halder, Raju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces {\sf FedRLChain}, a novel framework for blockchain-based secure federated deep reinforcement learning, which allows users to securely and collaboratively train a Deep Reinforcement Learning (DRL) model by plugging appropriate aggregation and verification algorithms for specific problems. Unlike existing systems, {\sf FedRLChain} adopts (1) a novel verification algorithm to prevent malicious clients, (2) an aggregation weight scheme from preventing the global model from getting biased toward any client, and (3) a variant of traditional FedAverage algorithm to accelerate the convergence process. We perform a rigorous experimental evaluation of {\sf FedRLChain} considering the classic cart-pole problem, and we show a significant improvement in the number of epochs and time required for model convergence w.r.t. the state-of-the-art frameworks - DDQL, BAFFLE, and BASE-PIoT.
ISSN:1939-1374
2372-0204
DOI:10.1109/TSC.2023.3294063