Physical Status Representation in Multiple Administrative Optical Networks by Federated Unsupervised Learning
We present our data-collection and deep neural network (DNN)-training scheme for extracting the optical status from signals received by digital coherent optical receivers in fiber-optic networks. The DNN is trained with unlabeled datasets across multiple administrative network domains by combining f...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Communications 2023/11/01, Vol.E106.B(11), pp.1084-1092 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present our data-collection and deep neural network (DNN)-training scheme for extracting the optical status from signals received by digital coherent optical receivers in fiber-optic networks. The DNN is trained with unlabeled datasets across multiple administrative network domains by combining federated learning and unsupervised learning. The scheme allows network administrators to train a common DNN-based encoder that extracts optical status in their networks without revealing their private datasets. An early-stage proof of concept was numerically demonstrated by simulation by estimating the optical signal-to-noise ratio and modulation format with 64-GBd 16QAM and quadrature phase-shift keying signals. |
---|---|
ISSN: | 0916-8516 1745-1345 |
DOI: | 10.1587/transcom.2022OBP0004 |