Distances in 1‖x-y‖2d Percolation Models for all Dimensions
We study independent long-range percolation on Z d for all dimensions d , where the vertices u and v are connected with probability 1 for ‖ u - v ‖ ∞ = 1 and with probability p ( β , { u , v } ) = 1 - e - β ∫ u + 0 , 1 d ∫ v + 0 , 1 d 1 ‖ x - y ‖ 2 2 d d x d y ≈ β ‖ u - v ‖ 2 2 d for ‖ u - v ‖ ∞ ≥ 2...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2023, Vol.404 (3), p.1495-1570 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study independent long-range percolation on
Z
d
for all dimensions
d
, where the vertices
u
and
v
are connected with probability 1 for
‖
u
-
v
‖
∞
=
1
and with probability
p
(
β
,
{
u
,
v
}
)
=
1
-
e
-
β
∫
u
+
0
,
1
d
∫
v
+
0
,
1
d
1
‖
x
-
y
‖
2
2
d
d
x
d
y
≈
β
‖
u
-
v
‖
2
2
d
for
‖
u
-
v
‖
∞
≥
2
. Let
u
∈
Z
d
be a point with
‖
u
‖
∞
=
n
. We show that both the graph distance
D
(
0
,
u
)
between the origin
0
and
u
and the diameter of the box
{
0
,
…
,
n
}
d
grow like
n
θ
(
β
)
, where
0
<
θ
(
β
)
<
1
. We also show that the graph distance and the diameter of boxes have the same asymptotic growth when two vertices
u
,
v
with
‖
u
-
v
‖
2
>
1
are connected with a probability that is close enough to
p
(
β
,
{
u
,
v
}
)
. Furthermore, we determine the asymptotic behavior of
θ
(
β
)
for large
β
, and we discuss the tail behavior of
D
(
0
,
u
)
‖
u
‖
2
θ
(
β
)
. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-023-04861-z |