Time Sequence Data Analysis of power consumption behavior classification based on K-Mean Clustering Model

This paper analyzes the consumer's energy consumption model, that is, the time series data generated at four quarters per day. Analyze changes in the level of consumption in the daily granularity using random-based verification. The clustering technique is used to kaggle datasets into multiple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroQuantology 2022-01, Vol.20 (6), p.7637
Hauptverfasser: Kayalvizhy, V, Banumathi, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 7637
container_title NeuroQuantology
container_volume 20
creator Kayalvizhy, V
Banumathi, A
description This paper analyzes the consumer's energy consumption model, that is, the time series data generated at four quarters per day. Analyze changes in the level of consumption in the daily granularity using random-based verification. The clustering technique is used to kaggle datasets into multiple clusters based on similar features and characteristics.
doi_str_mv 10.14704/nq.2022.20.6.NQ22762
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900738681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900738681</sourcerecordid><originalsourceid>FETCH-proquest_journals_29007386813</originalsourceid><addsrcrecordid>eNqNjdFKw0AQRRdBsGo_QRjwOXF20yTto1SlUCJI8x7GdKJbtrtpJlH8exfqB_hy7-Vw4Sh1pzHVixIXD_6UGjQmRlqkr2_GlIW5UDOdYZbkOscrdS1yQMxLXBUzZWt7ZNjxaWLfMjzRSPDoyf2IFQgd9OGbB2iDl-nYjzZ4eOdP-rIhQkcitrMtnTkJ7yGObVIxeVi7SUYerP-AKuzZ3arLjpzw_K9v1P3Lc73eJP0Qol3G5hCmIaqlMSvEMlsWS5397_ULI2ZOBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900738681</pqid></control><display><type>article</type><title>Time Sequence Data Analysis of power consumption behavior classification based on K-Mean Clustering Model</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kayalvizhy, V ; Banumathi, A</creator><creatorcontrib>Kayalvizhy, V ; Banumathi, A</creatorcontrib><description>This paper analyzes the consumer's energy consumption model, that is, the time series data generated at four quarters per day. Analyze changes in the level of consumption in the daily granularity using random-based verification. The clustering technique is used to kaggle datasets into multiple clusters based on similar features and characteristics.</description><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.14704/nq.2022.20.6.NQ22762</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Algorithms ; Classification ; Clustering ; Computer science ; Consumers ; Customers ; Data analysis ; Electricity ; Energy consumption ; Machine learning ; Power ; Power consumption ; Time series</subject><ispartof>NeuroQuantology, 2022-01, Vol.20 (6), p.7637</ispartof><rights>Copyright NeuroQuantology 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Kayalvizhy, V</creatorcontrib><creatorcontrib>Banumathi, A</creatorcontrib><title>Time Sequence Data Analysis of power consumption behavior classification based on K-Mean Clustering Model</title><title>NeuroQuantology</title><description>This paper analyzes the consumer's energy consumption model, that is, the time series data generated at four quarters per day. Analyze changes in the level of consumption in the daily granularity using random-based verification. The clustering technique is used to kaggle datasets into multiple clusters based on similar features and characteristics.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Clustering</subject><subject>Computer science</subject><subject>Consumers</subject><subject>Customers</subject><subject>Data analysis</subject><subject>Electricity</subject><subject>Energy consumption</subject><subject>Machine learning</subject><subject>Power</subject><subject>Power consumption</subject><subject>Time series</subject><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNjdFKw0AQRRdBsGo_QRjwOXF20yTto1SlUCJI8x7GdKJbtrtpJlH8exfqB_hy7-Vw4Sh1pzHVixIXD_6UGjQmRlqkr2_GlIW5UDOdYZbkOscrdS1yQMxLXBUzZWt7ZNjxaWLfMjzRSPDoyf2IFQgd9OGbB2iDl-nYjzZ4eOdP-rIhQkcitrMtnTkJ7yGObVIxeVi7SUYerP-AKuzZ3arLjpzw_K9v1P3Lc73eJP0Qol3G5hCmIaqlMSvEMlsWS5397_ULI2ZOBA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Kayalvizhy, V</creator><creator>Banumathi, A</creator><general>NeuroQuantology</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>Time Sequence Data Analysis of power consumption behavior classification based on K-Mean Clustering Model</title><author>Kayalvizhy, V ; Banumathi, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29007386813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Clustering</topic><topic>Computer science</topic><topic>Consumers</topic><topic>Customers</topic><topic>Data analysis</topic><topic>Electricity</topic><topic>Energy consumption</topic><topic>Machine learning</topic><topic>Power</topic><topic>Power consumption</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Kayalvizhy, V</creatorcontrib><creatorcontrib>Banumathi, A</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kayalvizhy, V</au><au>Banumathi, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Sequence Data Analysis of power consumption behavior classification based on K-Mean Clustering Model</atitle><jtitle>NeuroQuantology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>20</volume><issue>6</issue><spage>7637</spage><pages>7637-</pages><eissn>1303-5150</eissn><abstract>This paper analyzes the consumer's energy consumption model, that is, the time series data generated at four quarters per day. Analyze changes in the level of consumption in the daily granularity using random-based verification. The clustering technique is used to kaggle datasets into multiple clusters based on similar features and characteristics.</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.14704/nq.2022.20.6.NQ22762</doi></addata></record>
fulltext fulltext
identifier EISSN: 1303-5150
ispartof NeuroQuantology, 2022-01, Vol.20 (6), p.7637
issn 1303-5150
language eng
recordid cdi_proquest_journals_2900738681
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Classification
Clustering
Computer science
Consumers
Customers
Data analysis
Electricity
Energy consumption
Machine learning
Power
Power consumption
Time series
title Time Sequence Data Analysis of power consumption behavior classification based on K-Mean Clustering Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Sequence%20Data%20Analysis%20of%20power%20consumption%20behavior%20classification%20based%20on%20K-Mean%20Clustering%20Model&rft.jtitle=NeuroQuantology&rft.au=Kayalvizhy,%20V&rft.date=2022-01-01&rft.volume=20&rft.issue=6&rft.spage=7637&rft.pages=7637-&rft.eissn=1303-5150&rft_id=info:doi/10.14704/nq.2022.20.6.NQ22762&rft_dat=%3Cproquest%3E2900738681%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900738681&rft_id=info:pmid/&rfr_iscdi=true