Time Sequence Data Analysis of power consumption behavior classification based on K-Mean Clustering Model
This paper analyzes the consumer's energy consumption model, that is, the time series data generated at four quarters per day. Analyze changes in the level of consumption in the daily granularity using random-based verification. The clustering technique is used to kaggle datasets into multiple...
Gespeichert in:
Veröffentlicht in: | NeuroQuantology 2022-01, Vol.20 (6), p.7637 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 7637 |
container_title | NeuroQuantology |
container_volume | 20 |
creator | Kayalvizhy, V Banumathi, A |
description | This paper analyzes the consumer's energy consumption model, that is, the time series data generated at four quarters per day. Analyze changes in the level of consumption in the daily granularity using random-based verification. The clustering technique is used to kaggle datasets into multiple clusters based on similar features and characteristics. |
doi_str_mv | 10.14704/nq.2022.20.6.NQ22762 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900738681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900738681</sourcerecordid><originalsourceid>FETCH-proquest_journals_29007386813</originalsourceid><addsrcrecordid>eNqNjdFKw0AQRRdBsGo_QRjwOXF20yTto1SlUCJI8x7GdKJbtrtpJlH8exfqB_hy7-Vw4Sh1pzHVixIXD_6UGjQmRlqkr2_GlIW5UDOdYZbkOscrdS1yQMxLXBUzZWt7ZNjxaWLfMjzRSPDoyf2IFQgd9OGbB2iDl-nYjzZ4eOdP-rIhQkcitrMtnTkJ7yGObVIxeVi7SUYerP-AKuzZ3arLjpzw_K9v1P3Lc73eJP0Qol3G5hCmIaqlMSvEMlsWS5397_ULI2ZOBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900738681</pqid></control><display><type>article</type><title>Time Sequence Data Analysis of power consumption behavior classification based on K-Mean Clustering Model</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kayalvizhy, V ; Banumathi, A</creator><creatorcontrib>Kayalvizhy, V ; Banumathi, A</creatorcontrib><description>This paper analyzes the consumer's energy consumption model, that is, the time series data generated at four quarters per day. Analyze changes in the level of consumption in the daily granularity using random-based verification. The clustering technique is used to kaggle datasets into multiple clusters based on similar features and characteristics.</description><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.14704/nq.2022.20.6.NQ22762</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Algorithms ; Classification ; Clustering ; Computer science ; Consumers ; Customers ; Data analysis ; Electricity ; Energy consumption ; Machine learning ; Power ; Power consumption ; Time series</subject><ispartof>NeuroQuantology, 2022-01, Vol.20 (6), p.7637</ispartof><rights>Copyright NeuroQuantology 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Kayalvizhy, V</creatorcontrib><creatorcontrib>Banumathi, A</creatorcontrib><title>Time Sequence Data Analysis of power consumption behavior classification based on K-Mean Clustering Model</title><title>NeuroQuantology</title><description>This paper analyzes the consumer's energy consumption model, that is, the time series data generated at four quarters per day. Analyze changes in the level of consumption in the daily granularity using random-based verification. The clustering technique is used to kaggle datasets into multiple clusters based on similar features and characteristics.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Clustering</subject><subject>Computer science</subject><subject>Consumers</subject><subject>Customers</subject><subject>Data analysis</subject><subject>Electricity</subject><subject>Energy consumption</subject><subject>Machine learning</subject><subject>Power</subject><subject>Power consumption</subject><subject>Time series</subject><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNjdFKw0AQRRdBsGo_QRjwOXF20yTto1SlUCJI8x7GdKJbtrtpJlH8exfqB_hy7-Vw4Sh1pzHVixIXD_6UGjQmRlqkr2_GlIW5UDOdYZbkOscrdS1yQMxLXBUzZWt7ZNjxaWLfMjzRSPDoyf2IFQgd9OGbB2iDl-nYjzZ4eOdP-rIhQkcitrMtnTkJ7yGObVIxeVi7SUYerP-AKuzZ3arLjpzw_K9v1P3Lc73eJP0Qol3G5hCmIaqlMSvEMlsWS5397_ULI2ZOBA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Kayalvizhy, V</creator><creator>Banumathi, A</creator><general>NeuroQuantology</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>Time Sequence Data Analysis of power consumption behavior classification based on K-Mean Clustering Model</title><author>Kayalvizhy, V ; Banumathi, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29007386813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Clustering</topic><topic>Computer science</topic><topic>Consumers</topic><topic>Customers</topic><topic>Data analysis</topic><topic>Electricity</topic><topic>Energy consumption</topic><topic>Machine learning</topic><topic>Power</topic><topic>Power consumption</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Kayalvizhy, V</creatorcontrib><creatorcontrib>Banumathi, A</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kayalvizhy, V</au><au>Banumathi, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Sequence Data Analysis of power consumption behavior classification based on K-Mean Clustering Model</atitle><jtitle>NeuroQuantology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>20</volume><issue>6</issue><spage>7637</spage><pages>7637-</pages><eissn>1303-5150</eissn><abstract>This paper analyzes the consumer's energy consumption model, that is, the time series data generated at four quarters per day. Analyze changes in the level of consumption in the daily granularity using random-based verification. The clustering technique is used to kaggle datasets into multiple clusters based on similar features and characteristics.</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.14704/nq.2022.20.6.NQ22762</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1303-5150 |
ispartof | NeuroQuantology, 2022-01, Vol.20 (6), p.7637 |
issn | 1303-5150 |
language | eng |
recordid | cdi_proquest_journals_2900738681 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Classification Clustering Computer science Consumers Customers Data analysis Electricity Energy consumption Machine learning Power Power consumption Time series |
title | Time Sequence Data Analysis of power consumption behavior classification based on K-Mean Clustering Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A07%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Sequence%20Data%20Analysis%20of%20power%20consumption%20behavior%20classification%20based%20on%20K-Mean%20Clustering%20Model&rft.jtitle=NeuroQuantology&rft.au=Kayalvizhy,%20V&rft.date=2022-01-01&rft.volume=20&rft.issue=6&rft.spage=7637&rft.pages=7637-&rft.eissn=1303-5150&rft_id=info:doi/10.14704/nq.2022.20.6.NQ22762&rft_dat=%3Cproquest%3E2900738681%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900738681&rft_id=info:pmid/&rfr_iscdi=true |