Time Sequence Data Analysis of power consumption behavior classification based on K-Mean Clustering Model

This paper analyzes the consumer's energy consumption model, that is, the time series data generated at four quarters per day. Analyze changes in the level of consumption in the daily granularity using random-based verification. The clustering technique is used to kaggle datasets into multiple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroQuantology 2022-01, Vol.20 (6), p.7637
Hauptverfasser: Kayalvizhy, V, Banumathi, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper analyzes the consumer's energy consumption model, that is, the time series data generated at four quarters per day. Analyze changes in the level of consumption in the daily granularity using random-based verification. The clustering technique is used to kaggle datasets into multiple clusters based on similar features and characteristics.
ISSN:1303-5150
DOI:10.14704/nq.2022.20.6.NQ22762