Towards Context-Stable and Visual-Consistent Image Inpainting
Recent progress in inpainting increasingly relies on generative models, leveraging their strong generation capabilities for addressing large irregular masks. However, this enhanced generation often introduces context-instability, leading to arbitrary object generation within masked regions. This pap...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent progress in inpainting increasingly relies on generative models, leveraging their strong generation capabilities for addressing large irregular masks. However, this enhanced generation often introduces context-instability, leading to arbitrary object generation within masked regions. This paper proposes a balanced solution, emphasizing the importance of unmasked regions in guiding inpainting while preserving generation capacity. Our approach, Aligned Stable Inpainting with UnKnown Areas Prior (ASUKA), employs a Masked Auto-Encoder (MAE) to produce reconstruction-based prior. Aligned with the powerful Stable Diffusion inpainting model (SD), ASUKA significantly improves context stability. ASUKA further adopts an inpainting-specialized decoder, highly reducing the color inconsistency issue of SD and thus ensuring more visual-consistent inpainting. We validate effectiveness of inpainting algorithms on benchmark dataset Places 2 and a collection of several existing datasets, dubbed MISATO, across diverse domains and masking scenarios. Results on these benchmark datasets confirm ASUKA's efficacy in both context-stability and visual-consistency compared to SD and other inpainting algorithms. |
---|---|
ISSN: | 2331-8422 |