Intelligent EU-TIRADS classificator for early detection of thyroid anomalies using deep learning convolutional neural network

The paper presents intelligent EU-TIRADS classificator for early detection of thyroid anomalies using a Deep Learning approach. The image data set is consisting of ultrasound images of the Thyroid glance which are classified in five classes: EU-TIRADS – 1, where 1 represents healthy individuals and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ivanova, Desislava, Staeva, Juliana, Shinkov, Alexander, Kovacheva, Rusanka
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper presents intelligent EU-TIRADS classificator for early detection of thyroid anomalies using a Deep Learning approach. The image data set is consisting of ultrasound images of the Thyroid glance which are classified in five classes: EU-TIRADS – 1, where 1 represents healthy individuals and EU-TIRADS 2-5, where the stage represents the severity of the disease. The Deep learning approach of choice in this experiment is a Deep learning Convolutional Neural Network. This algorithm was selected as it can provide high accuracy without explicit image processing prior to modelling. Finally, the classification performance metrics are presented.
ISSN:0094-243X
1551-7616
DOI:10.1063/5.0178679