Locally finite ultrametric spaces and labeled trees
It is shown that a locally finite ultrametric space ( X , d ) is generated by a labeled tree if and only if for every open ball B ⊆ X there is a point c ∈ B such that d ( x , c ) = diam B whenever x ∈ B and x ≠ c. For every finite ultrametric space Y , we construct an ultrametric space Z having the...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-11, Vol.276 (5), p.614-637 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that a locally finite ultrametric space (
X
,
d
) is generated by a labeled tree if and only if for every open ball
B
⊆
X
there is a point
c
∈
B
such that
d
(
x
,
c
) = diam
B
whenever
x
∈
B
and
x
≠ c. For every finite ultrametric space
Y
, we construct an ultrametric space
Z
having the smallest possible number of points such that
Z
is generated by a labeled tree and
Y
is isometric to a subspace of
Z
. It is proved that for a given
Y
such a space
Z
is unique up to isometry. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-023-06786-3 |