Locally finite ultrametric spaces and labeled trees

It is shown that a locally finite ultrametric space ( X , d ) is generated by a labeled tree if and only if for every open ball B ⊆ X there is a point c ∈ B such that d ( x , c ) = diam B whenever x ∈ B and x ≠ c. For every finite ultrametric space Y , we construct an ultrametric space Z having the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2023-11, Vol.276 (5), p.614-637
Hauptverfasser: Dovgoshey, Oleksiy, Kostikov, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is shown that a locally finite ultrametric space ( X , d ) is generated by a labeled tree if and only if for every open ball B ⊆ X there is a point c ∈ B such that d ( x , c ) = diam B whenever x ∈ B and x ≠ c. For every finite ultrametric space Y , we construct an ultrametric space Z having the smallest possible number of points such that Z is generated by a labeled tree and Y is isometric to a subspace of Z . It is proved that for a given Y such a space Z is unique up to isometry.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-023-06786-3