Gromov–Hausdorff stability of global attractors for the 3D Navier–Stokes equations with damping

This paper is concerned with the Gromov–Hausdorff stability of global attractors for the 3D Navier–Stokes equations with damping under variations of the domain, which describes the complexity of the dynamics of the motion of a fluid flow. The Gromov–Hausdorff stability accounts for the Gromov–Hausdo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2024-02, Vol.75 (1), Article 1
Hauptverfasser: Tao, Zhengwang, Yang, Xin-Guang, Miranville, Alain, Li, Desheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the Gromov–Hausdorff stability of global attractors for the 3D Navier–Stokes equations with damping under variations of the domain, which describes the complexity of the dynamics of the motion of a fluid flow. The Gromov–Hausdorff stability accounts for the Gromov–Hausdorff distance between two global attractors which may lie in disjoint phase spaces, as well as the stability of global attractors under perturbations of the domain. The same phase space cannot be used for the convergence via the Gromov–Hausdorff distance, which can be overcome, following Lee et al.(2020), by introducing a Banach space defined on a variable domain without “pull-backing” the perturbed system onto the original domain.
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-023-02146-y