Reed-Muller codes have vanishing bit-error probability below capacity: a simple tighter proof via camellia boosting
This paper shows that a class of codes such as Reed-Muller (RM) codes have vanishing bit-error probability below capacity on symmetric channels. The proof relies on the notion of `camellia codes': a class of symmetric codes decomposable into `camellias', i.e., set systems that differ from...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Abbe, Emmanuel Sandon, Colin |
description | This paper shows that a class of codes such as Reed-Muller (RM) codes have vanishing bit-error probability below capacity on symmetric channels. The proof relies on the notion of `camellia codes': a class of symmetric codes decomposable into `camellias', i.e., set systems that differ from sunflowers by allowing for scattered petal overlaps. The proof then follows from a boosting argument on the camellia petals with second moment Fourier analysis. For erasure channels, this gives a self-contained proof of the bit-error result in Kudekar et al.'17, without relying on sharp thresholds for monotone properties Friedgut-Kalai'96. For error channels, this gives a shortened proof of Reeves-Pfister'23 with an exponentially tighter bound, and a proof variant of the bit-error result in Abbe-Sandon'23. The control of the full (block) error probability still requires Abbe-Sandon'23 for RM codes. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2899520075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899520075</sourcerecordid><originalsourceid>FETCH-proquest_journals_28995200753</originalsourceid><addsrcrecordid>eNqNjEEKwjAURIMgKNo7fHBdiKm11q0obtyIe0na3zaSNjU_rXh7g3gAVzPDvJkJm4skWce7jRAzFhE9OOdim4k0TeaMrohlfBmMQQeFLZGgkSPCKDtNje5qUNrH6Jx10DurpNJG-zcoNPYFhexlEeIeJJBue4Pgdd14_MK2glHLALVoTDDKWvLhcsmmlTSE0U8XbHU63g7nOGyeA5K_P-zgulDdxS7PU8F5lib_UR8ELUxq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899520075</pqid></control><display><type>article</type><title>Reed-Muller codes have vanishing bit-error probability below capacity: a simple tighter proof via camellia boosting</title><source>Free E- Journals</source><creator>Abbe, Emmanuel ; Sandon, Colin</creator><creatorcontrib>Abbe, Emmanuel ; Sandon, Colin</creatorcontrib><description>This paper shows that a class of codes such as Reed-Muller (RM) codes have vanishing bit-error probability below capacity on symmetric channels. The proof relies on the notion of `camellia codes': a class of symmetric codes decomposable into `camellias', i.e., set systems that differ from sunflowers by allowing for scattered petal overlaps. The proof then follows from a boosting argument on the camellia petals with second moment Fourier analysis. For erasure channels, this gives a self-contained proof of the bit-error result in Kudekar et al.'17, without relying on sharp thresholds for monotone properties Friedgut-Kalai'96. For error channels, this gives a shortened proof of Reeves-Pfister'23 with an exponentially tighter bound, and a proof variant of the bit-error result in Abbe-Sandon'23. The control of the full (block) error probability still requires Abbe-Sandon'23 for RM codes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Channels ; Fourier analysis</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Abbe, Emmanuel</creatorcontrib><creatorcontrib>Sandon, Colin</creatorcontrib><title>Reed-Muller codes have vanishing bit-error probability below capacity: a simple tighter proof via camellia boosting</title><title>arXiv.org</title><description>This paper shows that a class of codes such as Reed-Muller (RM) codes have vanishing bit-error probability below capacity on symmetric channels. The proof relies on the notion of `camellia codes': a class of symmetric codes decomposable into `camellias', i.e., set systems that differ from sunflowers by allowing for scattered petal overlaps. The proof then follows from a boosting argument on the camellia petals with second moment Fourier analysis. For erasure channels, this gives a self-contained proof of the bit-error result in Kudekar et al.'17, without relying on sharp thresholds for monotone properties Friedgut-Kalai'96. For error channels, this gives a shortened proof of Reeves-Pfister'23 with an exponentially tighter bound, and a proof variant of the bit-error result in Abbe-Sandon'23. The control of the full (block) error probability still requires Abbe-Sandon'23 for RM codes.</description><subject>Channels</subject><subject>Fourier analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEEKwjAURIMgKNo7fHBdiKm11q0obtyIe0na3zaSNjU_rXh7g3gAVzPDvJkJm4skWce7jRAzFhE9OOdim4k0TeaMrohlfBmMQQeFLZGgkSPCKDtNje5qUNrH6Jx10DurpNJG-zcoNPYFhexlEeIeJJBue4Pgdd14_MK2glHLALVoTDDKWvLhcsmmlTSE0U8XbHU63g7nOGyeA5K_P-zgulDdxS7PU8F5lib_UR8ELUxq</recordid><startdate>20231207</startdate><enddate>20231207</enddate><creator>Abbe, Emmanuel</creator><creator>Sandon, Colin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231207</creationdate><title>Reed-Muller codes have vanishing bit-error probability below capacity: a simple tighter proof via camellia boosting</title><author>Abbe, Emmanuel ; Sandon, Colin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28995200753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Channels</topic><topic>Fourier analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Abbe, Emmanuel</creatorcontrib><creatorcontrib>Sandon, Colin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbe, Emmanuel</au><au>Sandon, Colin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Reed-Muller codes have vanishing bit-error probability below capacity: a simple tighter proof via camellia boosting</atitle><jtitle>arXiv.org</jtitle><date>2023-12-07</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper shows that a class of codes such as Reed-Muller (RM) codes have vanishing bit-error probability below capacity on symmetric channels. The proof relies on the notion of `camellia codes': a class of symmetric codes decomposable into `camellias', i.e., set systems that differ from sunflowers by allowing for scattered petal overlaps. The proof then follows from a boosting argument on the camellia petals with second moment Fourier analysis. For erasure channels, this gives a self-contained proof of the bit-error result in Kudekar et al.'17, without relying on sharp thresholds for monotone properties Friedgut-Kalai'96. For error channels, this gives a shortened proof of Reeves-Pfister'23 with an exponentially tighter bound, and a proof variant of the bit-error result in Abbe-Sandon'23. The control of the full (block) error probability still requires Abbe-Sandon'23 for RM codes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2899520075 |
source | Free E- Journals |
subjects | Channels Fourier analysis |
title | Reed-Muller codes have vanishing bit-error probability below capacity: a simple tighter proof via camellia boosting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A52%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Reed-Muller%20codes%20have%20vanishing%20bit-error%20probability%20below%20capacity:%20a%20simple%20tighter%20proof%20via%20camellia%20boosting&rft.jtitle=arXiv.org&rft.au=Abbe,%20Emmanuel&rft.date=2023-12-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2899520075%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899520075&rft_id=info:pmid/&rfr_iscdi=true |