Reed-Muller codes have vanishing bit-error probability below capacity: a simple tighter proof via camellia boosting

This paper shows that a class of codes such as Reed-Muller (RM) codes have vanishing bit-error probability below capacity on symmetric channels. The proof relies on the notion of `camellia codes': a class of symmetric codes decomposable into `camellias', i.e., set systems that differ from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Abbe, Emmanuel, Sandon, Colin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper shows that a class of codes such as Reed-Muller (RM) codes have vanishing bit-error probability below capacity on symmetric channels. The proof relies on the notion of `camellia codes': a class of symmetric codes decomposable into `camellias', i.e., set systems that differ from sunflowers by allowing for scattered petal overlaps. The proof then follows from a boosting argument on the camellia petals with second moment Fourier analysis. For erasure channels, this gives a self-contained proof of the bit-error result in Kudekar et al.'17, without relying on sharp thresholds for monotone properties Friedgut-Kalai'96. For error channels, this gives a shortened proof of Reeves-Pfister'23 with an exponentially tighter bound, and a proof variant of the bit-error result in Abbe-Sandon'23. The control of the full (block) error probability still requires Abbe-Sandon'23 for RM codes.
ISSN:2331-8422