Deterministic Creation of Large Photonic Multipartite Entangled States with Group-IV Color Centers in Diamond
Measurement-based quantum computation relies on single qubit measurements of large multipartite entangled states, so-called lattice-graph or cluster states. Graph states are also an important resource for quantum communication, where tree cluster states are a key resource for one-way quantum repeate...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Measurement-based quantum computation relies on single qubit measurements of large multipartite entangled states, so-called lattice-graph or cluster states. Graph states are also an important resource for quantum communication, where tree cluster states are a key resource for one-way quantum repeaters. A photonic realization of this kind of state would inherit many of the benefits of photonic platforms, such as very little dephasing due to weak environmental interactions and the well-developed infrastructure to route and measure photonic qubits. In this work, a linear cluster state and GHZ state generation scheme is developed for group-IV color centers. In particular, this article focuses on an in-depth investigation of the required control operations, including the coherent spin and excitation gates. We choose an off-resonant Raman scheme for the spin gates, which can be much faster than microwave control. We do not rely on a reduced level scheme and use efficient approximations to design high-fidelity Raman gates. We benchmark the spin-control and excitation scheme using the tin vacancy color center coupled to a cavity, assuming a realistic experimental setting. Additionally, the article investigates the fidelities of the Raman and excitation gates in the presence of radiative and non-radiative decay mechanisms. Finally, a quality measure is devised, which emphasizes the importance of fast and high-fidelity spin gates in the creation of large entangled photonic states. |
---|---|
ISSN: | 2331-8422 |