Generating Multiphase Fluid Configurations in Fractures using Diffusion Models
Pore-scale simulations accurately describe transport properties of fluids in the subsurface. These simulations enhance our understanding of applications such as assessing hydrogen storage efficiency and forecasting CO\(_2\) sequestration processes in underground reservoirs. Nevertheless, they are co...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pore-scale simulations accurately describe transport properties of fluids in the subsurface. These simulations enhance our understanding of applications such as assessing hydrogen storage efficiency and forecasting CO\(_2\) sequestration processes in underground reservoirs. Nevertheless, they are computationally expensive due to their mesoscopic nature. In addition, their stationary solutions are not guaranteed to be unique, so multiple runs with different initial conditions must be performed to ensure sufficient sample coverage. These factors complicate the task of obtaining representative and reliable forecasts. To overcome the high computational cost hurdle, we propose a hybrid method that couples generative diffusion models and physics-based modeling. Upon training a generative model, we synthesize samples that serve as the initial conditions for physics-based simulations. We measure the relaxation time (to stationary solutions) of the simulations, which serves as a validation metric and early-stopping criterion. Our numerical experiments revealed that the hybrid method exhibits a speed-up of up to 8.2 times compared to commonly used initialization methods. This finding offers compelling initial support that the proposed diffusion model-based hybrid scheme has potentials to significantly decrease the time required for convergence of numerical simulations without compromising the physical robustness. |
---|---|
ISSN: | 2331-8422 |