Boundary Regularity for k-Hessian Equations

In this paper we focus on the boundary regularity for a class of k -Hessian equations which can be degenerate and (or) singular on the boundary of the domain. Motivated by the case of Monge–Ampère equations, we first construct sub-solutions, then apply the characteristic of the global Hölder continu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2023-12, Vol.39 (12), p.2393-2413
Hauptverfasser: Li, You, Li, Meng Ni, Liu, Yan Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we focus on the boundary regularity for a class of k -Hessian equations which can be degenerate and (or) singular on the boundary of the domain. Motivated by the case of Monge–Ampère equations, we first construct sub-solutions, then apply the characteristic of the global Hölder continuity for convex functions, and finally use the maximum principle to obtain the boundary Hölder continuity for the solutions of the k -Hessian equations. However, finding such sub-solutions is very difficult due to the complexity of the k -Hessian operator. In particular, we employ the symmetric mean to overcome the difficulties.
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-023-0066-9