ULMA: Unified Language Model Alignment with Human Demonstration and Point-wise Preference
Aligning language models to human expectations, e.g., being helpful and harmless, has become a pressing challenge for large language models. A typical alignment procedure consists of supervised fine-tuning and preference learning. Most preference learning methods, such as RLHF and DPO, depend on pai...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aligning language models to human expectations, e.g., being helpful and harmless, has become a pressing challenge for large language models. A typical alignment procedure consists of supervised fine-tuning and preference learning. Most preference learning methods, such as RLHF and DPO, depend on pairwise preference data, which inadequately address scenarios where human feedback is point-wise, leading to potential information loss and suboptimal performance. Addressing this gap, we introduce Point-wise Direct Preference Optimization, a novel preference learning method designed to harness point-wise feedback effectively. Our work also uncovers a novel connection between supervised fine-tuning and point-wise preference learning, culminating in Unified Language Model Alignment, a single-step method that unifies the alignment with human demonstrations and point-wise preferences. Extensive experiments on point-wise preference datasets with binary or continuous labels validate the effectiveness of our methods. Our code and a new dataset with high-quality demonstration samples on harmlessness are released. |
---|---|
ISSN: | 2331-8422 |