Core‐Shell Reactor Partitioning Enzyme and Prodrug by ZIF‐8for NADPH‐Sensitive In Situ Prodrug Activation

Enzyme‐prodrug therapies have shown unique advantages in efficiency, selectivity, and specificity of in vivo prodrug activation. However, precise spatiotemporal control of both the enzyme and its substrate at the target site, preservation of enzyme activity, and in situ substrate depletion due to lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2023-12, Vol.135 (50)
Hauptverfasser: Wang, Bo, Zhang, Sheng, Zi‐Tao Shen, Hou, Ting, Yi‐Han Zhao, Meng‐Sheng Huang, Li, Jian, Chen, Huan, Peng‐Hui Hu, Zi‐Jiang Luo, Yuan, Shuai, Feng‐Min Wang, Li, Wei, Chang, Shu, Xing‐Hua Xia, Ding, Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Enzyme‐prodrug therapies have shown unique advantages in efficiency, selectivity, and specificity of in vivo prodrug activation. However, precise spatiotemporal control of both the enzyme and its substrate at the target site, preservation of enzyme activity, and in situ substrate depletion due to low prodrug delivery efficiency continue to be great challenges. Here, we propose a novel core–shell reactor partitioning enzyme and prodrug by ZIF‐8, which integrates an enzyme with its substrate and increases the drug loading capacity (DLC) using a prodrug as the building ligand to form a Zn‐prodrug shell. Cytochrome P450 (CYP450) is immobilized in ZIF‐8, and the antitumor drug dacarbazine (DTIC) is coordinated and deposited in its outer layer with a high DLC of 43.6±0.8 %. With this configuration, a much higher prodrug conversion efficiency of CYP450 (36.5±1.5 %) and lower IC50 value (26.3±2.6 μg/mL) are measured for B16‐F10 cells with a higher NADPH concentration than those of L02 cells and HUVECs. With the tumor targeting ability of hyaluronic acid, this core–shell enzyme reactor shows a high tumor suppression rate of 96.6±1.9 % and provides a simple and versatile strategy for enabling in vivo biocatalysis to be more efficient, selective, and safer.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202314025