Majorization theoretical approach to entanglement enhancement via local filtration

From the perspective of majorization theory, we study how to enhance the entanglement of a two-mode squeezed vacuum (TMSV) state by using local filtration operations. We present several schemes achieving entanglement enhancement with photon addition and subtraction, and then consider filtration as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Zacharie Van Herstraeten, Cerf, Nicolas J, Guha, Saikat, Gagatsos, Christos N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:From the perspective of majorization theory, we study how to enhance the entanglement of a two-mode squeezed vacuum (TMSV) state by using local filtration operations. We present several schemes achieving entanglement enhancement with photon addition and subtraction, and then consider filtration as a general probabilistic procedure consisting in acting with local (non-unitary) operators on each mode. From this, we identify a sufficient set of two conditions on filtration operators for successfully enhancing the entanglement of a TMSV state, namely the operators must be Fock-orthogonal (i.e., preserving the orthogonality of Fock states) and Fock-amplifying (i.e., giving larger amplitudes to larger Fock states). Our results notably prove that ideal photon addition, subtraction, and any concatenation thereof always enhance the entanglement of a TMSV state in the sense of majorization theory. We further investigate the case of realistic photon addition (subtraction) and are able to upper bound the distance between a realistic photon-added (-subtracted) TMSV state and a nearby state that is provably more entangled than the TMSV, thus extending entanglement enhancement to practical schemes via the use of a notion of approximate majorization. Finally, we consider the state resulting from \(k\)-photon addition (on each of the two modes) on a TMSV state. We prove analytically that the state corresponding to \(k=1\) majorizes any state corresponding to \(2\leq k \leq 8\) and we conjecture the validity of the statement for all \(k\geq 9\).
ISSN:2331-8422