Nonlinear Generalized Bi-skew Jordan n-Derivations on ∗-Algebras
Let A be a ∗ -algebra over the complex field C . For any T 1 , T 2 , … , T n ∈ A , define q 1 ( T 1 ) = T 1 , q 2 ( T 1 , T 2 ) = T 1 ⋄ T 2 = T 1 T 2 ∗ + T 2 T 1 ∗ and q n ( T 1 , T 2 , … , T n ) = q n - 1 ( T 1 , T 2 , … , T n - 1 ) ⋄ T n for all integers n ≥ 2 . In this article, it is shown that u...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2024, Vol.47 (1), Article 18 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
A
be a
∗
-algebra over the complex field
C
.
For any
T
1
,
T
2
,
…
,
T
n
∈
A
, define
q
1
(
T
1
)
=
T
1
,
q
2
(
T
1
,
T
2
)
=
T
1
⋄
T
2
=
T
1
T
2
∗
+
T
2
T
1
∗
and
q
n
(
T
1
,
T
2
,
…
,
T
n
)
=
q
n
-
1
(
T
1
,
T
2
,
…
,
T
n
-
1
)
⋄
T
n
for all integers
n
≥
2
.
In this article, it is shown that under certain assumptions a map
D
:
A
→
A
is a nonlinear bi-skew Jordan
n
-derivation (that is,
D
satisfies
D
(
q
n
(
T
1
,
T
2
,
…
,
T
n
)
)
=
∑
i
=
1
n
q
n
(
T
1
,
…
,
T
i
-
1
,
D
(
T
i
)
,
T
i
+
1
,
…
,
T
n
)
for all
T
1
,
T
2
,
…
,
T
n
∈
A
) if and only if
D
is an additive
∗
-derivation. Further, we introduce the notion of a nonlinear generalized bi-skew Jordan
n
-derivation of a
∗
-algebra and prove that every nonlinear generalized bi-skew Jordan
n
-derivation
G
:
A
→
A
is of the form
G
(
T
)
=
Z
T
+
D
(
T
)
for all
T
∈
A
,
where
Z
∈
Z
(
A
)
and
D
:
A
→
A
is an additive
∗
-derivation. As applications, we apply our main results to some special classes of
∗
-algebras such as prime
∗
-algebras, factor von Neumann algebras, von Neumann algebras with no central summonds of type
I
1
. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-023-01611-1 |