Towards Aligned Canonical Correlation Analysis: Preliminary Formulation and Proof-of-Concept Results

Canonical Correlation Analysis (CCA) has been widely applied to jointly embed multiple views of data in a maximally correlated latent space. However, the alignment between various data perspectives, which is required by traditional approaches, is unclear in many practical cases. In this work we prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Cheng, Biqian, Papalexakis, Evangelos E, Chen, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Canonical Correlation Analysis (CCA) has been widely applied to jointly embed multiple views of data in a maximally correlated latent space. However, the alignment between various data perspectives, which is required by traditional approaches, is unclear in many practical cases. In this work we propose a new framework Aligned Canonical Correlation Analysis (ACCA), to address this challenge by iteratively solving the alignment and multi-view embedding.
ISSN:2331-8422