On Subspaces of an Orlicz Space Spanned by Independent Identically Distributed Functions

Subspaces of an Orlicz space L M generated by probabilistically independent copies of a function , , are studied. In terms of dilations of f , we get a characterization of strongly embedded subspaces of this type and obtain conditions that guarantee that the unit ball of such a subspace has equi-abs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2023-08, Vol.108 (1), p.297-299
1. Verfasser: Astashkin, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Subspaces of an Orlicz space L M generated by probabilistically independent copies of a function , , are studied. In terms of dilations of f , we get a characterization of strongly embedded subspaces of this type and obtain conditions that guarantee that the unit ball of such a subspace has equi-absolutely continuous norms in L M . A class of Orlicz spaces such that, for all subspaces generated by independent identically distributed functions, these properties are equivalent and can be characterized by Matuszewska–Orlicz indices is determined.
ISSN:1064-5624
1531-8362
DOI:10.1134/S1064562423700801