Logarithmic cotangent bundles, Chern‐Mather classes, and the Huh‐Sturmfels involution conjecture
Using compactifications in the logarithmic cotangent bundle, we obtain a formula for the Chern classes of the pushforward of Lagrangian cycles under an open embedding with normal crossing complement. This generalizes earlier results of Aluffi and Wu‐Zhou. The first application of our formula is a ge...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2024-02, Vol.77 (2), p.1486-1508 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using compactifications in the logarithmic cotangent bundle, we obtain a formula for the Chern classes of the pushforward of Lagrangian cycles under an open embedding with normal crossing complement. This generalizes earlier results of Aluffi and Wu‐Zhou. The first application of our formula is a geometric description of Chern‐Mather classes of an arbitrary very affine variety, generalizing earlier results of Huh which held under the smooth and schön assumptions. As the second application, we prove an involution formula relating sectional maximum likelihood (ML) degrees and ML bidegrees, which was conjectured by Huh and Sturmfels in 2013. |
---|---|
ISSN: | 0010-3640 1097-0312 |
DOI: | 10.1002/cpa.22156 |