Structural and mechanical evaluation of a new Ti-Nb-Mo alloy produced by high-energy ball milling with variable milling time for biomedical applications

The main focus of this work is to investigate the impact of varying milling times (2 to 18 h) on the structural and mechanical properties of the developed Ti-Nb-Mo alloy. The morphology, phase composition, microstructure, and mechanical behavior of milled and sintered Ti-25Nb-25Mo alloy samples were...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2023-12, Vol.129 (11-12), p.4971-4991
Hauptverfasser: Dahmani, Marwa, Fellah, Mamoun, Hezil, Naouel, Benoudia, Mohamed-Cherif, Abdul Samad, Mohammed, Alburaikan, Alhanouf, Abd El-Wahed khalifa, Hamiden, Obrosov, Aleksei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main focus of this work is to investigate the impact of varying milling times (2 to 18 h) on the structural and mechanical properties of the developed Ti-Nb-Mo alloy. The morphology, phase composition, microstructure, and mechanical behavior of milled and sintered Ti-25Nb-25Mo alloy samples were characterized systematically using x-ray diffraction, scanning electron microscope, optical microscope, and Vicker microhardness. It was noted that the quantity of the β-Ti phase increased as the milling time increased. After 12 h of milling, the synthesized alloys exhibited a spherical morphology and texture with homogeneous distribution. The milled alloys' structural evolution and morphological changes were found to be dependent on their milling duration. Morphological analysis revealed that the crystallite size and mean pore size decreased when the milling duration increased, reaching minimum values of 51 nm and 
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-023-12650-0