SYMPLECTIC DIRAC OPERATORS FOR LIE ALGEBRAS AND GRADED HECKE ALGEBRAS
The aim of this paper is to define a pair of symplectic Dirac operators ( D + , D – ) in an algebraic setting motivated by the analogy with the algebraic orthogonal Dirac operators in representation theory. We work in the settings of Z/2-graded quadratic Lie algebras g = k + p and of graded affine H...
Gespeichert in:
Veröffentlicht in: | Transformation groups 2023-12, Vol.28 (4), p.1447-1475 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this paper is to define a pair of symplectic Dirac operators (
D
+
,
D
–
) in an algebraic setting motivated by the analogy with the algebraic orthogonal Dirac operators in representation theory. We work in the settings of Z/2-graded quadratic Lie algebras g = k + p and of graded affine Hecke algebras H. In these contexts, we show analogues of the Parthasarathy’s formula for [
D
+
,
D
–
] and certain generalisations of the Casimir inequality. |
---|---|
ISSN: | 1083-4362 1531-586X |
DOI: | 10.1007/s00031-022-09762-4 |