SYMPLECTIC DIRAC OPERATORS FOR LIE ALGEBRAS AND GRADED HECKE ALGEBRAS

The aim of this paper is to define a pair of symplectic Dirac operators ( D + , D – ) in an algebraic setting motivated by the analogy with the algebraic orthogonal Dirac operators in representation theory. We work in the settings of Z/2-graded quadratic Lie algebras g = k + p and of graded affine H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transformation groups 2023-12, Vol.28 (4), p.1447-1475
Hauptverfasser: CIUBOTARU, D., MARTINO, M. DE, MEYER, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this paper is to define a pair of symplectic Dirac operators ( D + , D – ) in an algebraic setting motivated by the analogy with the algebraic orthogonal Dirac operators in representation theory. We work in the settings of Z/2-graded quadratic Lie algebras g = k + p and of graded affine Hecke algebras H. In these contexts, we show analogues of the Parthasarathy’s formula for [ D + , D – ] and certain generalisations of the Casimir inequality.
ISSN:1083-4362
1531-586X
DOI:10.1007/s00031-022-09762-4