Approaching the isoperimetric problem in HCm via the hyperbolic log-convex density conjecture

We prove that geodesic balls centered at some base point are uniquely isoperimetric sets in the real hyperbolic space H R n endowed with a smooth, radial, strictly log-convex density on the volume and perimeter. This is an analogue of the result by G. R. Chambers for log-convex densities on R n . As...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2024, Vol.63 (1)
1. Verfasser: Silini, Lauro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that geodesic balls centered at some base point are uniquely isoperimetric sets in the real hyperbolic space H R n endowed with a smooth, radial, strictly log-convex density on the volume and perimeter. This is an analogue of the result by G. R. Chambers for log-convex densities on R n . As an application we prove that in any rank one symmetric space of non-compact type, geodesic balls are uniquely isoperimetric in a class of sets enjoying a suitable notion of radial symmetry.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-023-02617-0