Approaching the isoperimetric problem in HCm via the hyperbolic log-convex density conjecture
We prove that geodesic balls centered at some base point are uniquely isoperimetric sets in the real hyperbolic space H R n endowed with a smooth, radial, strictly log-convex density on the volume and perimeter. This is an analogue of the result by G. R. Chambers for log-convex densities on R n . As...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2024, Vol.63 (1) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that geodesic balls centered at some base point are uniquely isoperimetric sets in the real hyperbolic space
H
R
n
endowed with a smooth, radial, strictly log-convex density on the volume and perimeter. This is an analogue of the result by G. R. Chambers for log-convex densities on
R
n
. As an application we prove that in any rank one symmetric space of non-compact type, geodesic balls are uniquely isoperimetric in a class of sets enjoying a suitable notion of radial symmetry. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-023-02617-0 |